Introduction to NVIDIA CUDA

Why Massively Parallel Processor

A quiet revolution and

potential build-up (680 numbers)
Calculation: 544 GFLOPS vs.
264.96 GFLOPS (FP-64)

Memory Bandwidth: 153.66B/s "
vs. 25.6 GB/s

1250

Until recently, programmed
through graphics APT

1000

70

GPU in every PC and workstation
- massive volume and potential L . weirmre
impact s

o Tarperown
Sep01 " Uins Jun04 005 Mar07 Jul08 Decoo 2012

Future Apps in Concurrent World

o Exciting applications in future mass computing market
— Molecular dynamics simulation
— Video and audio coding and manipulation
— 3D imaging and visualization
— Consumer game physics
— Virtual reality products
o Various granularities of parallelism exist, but...
— programming model must not hinder parallel implementation
— data delivery needs careful management

o Introducing domain-specific architecture
— CUDA for GPGPU

What is GPGPU?

o General Purpose computation using GPU in applications
(other than 3D graphics)
— GPU accelerates critical path of application

o Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD (single-instruction multiple-data) parallelism
— Low-latency floating point (FP) computation

o Applications - see //GPGPU.org
— Game effects (FX) physics, image processing
— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

GPU and CPU: The Differences

B
e) B

CPU GPU

e GPU
— More fransistors devoted to computation, instead of caching
or flow control
— Suitable for data-intensive computation
-High arithmetic/memory operation ratio

CUDA

"Compute Unified Device Architecture”
General purpose programming model

— User kicks off batches of threads on the GPU

— GPU = dedicated super-threaded, massively data parallel co-processor
Targeted software stack

— Compute oriented drivers, cru .
language, and tools —_
Driver for loading computation ARl
programs into GPU B 1
— Standalone Driver - Optimized L
for computation + .
— Guaranteed maximum download & S ‘
readback speeds e
— Explicit 6PU memory f

management

CUDA Programming Model

e The GPU is viewed as a compute device that:
— Isa coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
- Hardware switching between threads (in 1 cycle) on
long-latency memory reference
- Overprovision (1000s of threads) - hide latencies

o Data-parallel portions of an application are executed on the

device as kernels which run in parallel on many threads
o Differences between GPU and CPU threads
— G6PU threads are extremely lightweight
- Very little creation overhead
— 6PU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

Thread Batching: Grids and Blocks

e Kernel executed as a grid of thread
blocks
— All threads share data memory
space
e Thread block is a batch of threads,
can cooperate with each other by:
— Synchronizing their execution:
For hazard-free shared memory
accesses
— Efficiently sharing data through
a low latency shared memory

e Two threads from two different
blocks cannot cooperate

— (Unless thru slow global memory)

e Threads and blocks have IDs

Grid 1

>

Block (1, 1)

Courtesy: NDVIA

Extended C

o Declspecs
— global, device,
shared, local,
constant
o Keywords
— threadIdx, blockIdx
o Intrinsics
— __syncthreads
* Runtime API

— Memory, symbol,
execution

}

region(threadIdx]

image(§)

__device__ float filter(N];
__global__ void convolve (float *image)

__shared__ float region[M];

= image(il;

__syncthreads ()

= result;

// Bllocate GPU memory

management

o Function launch

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage) ;

CUDA Function Declarations

Executed Only callable
on the: from the:

__device float DeviceFunc() device device
__global void KernelFunc() device Host
__host__ float HostFunc () host Host

e _ global__ defines akernel function

— Must return void
e _ device and _host__ canbe used together

CUDA Device Memory Space Overview

e Each thread can: (Device) Grid
— R/W per-thread registers)
— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory
— Read only per-grid constant
memory
— Read only per-grid texture
memory
e The host can R/W global,
constant, and texture
memories

Block (1, 0)

Global, Constant, and Texture Memories
(Long Latency Accesses)

(Device) Grid

o Global memory
— Main means of
communicating R/W Data
between host and device
— Contents visible fo all
threads
e Texture and Constant
Memories
— Constants initialized b
host
— Contents visible fo all
threads

Block (0, 0) Block (1, 0)

Courtesy: NDVIA ”

Calling Kernel Function — Thread Creation

e Akernel function must be called with an execution configuration:

lobal void KernelFunc(...);
DimGrid (100, 50); // 5000 thread blocks
i DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes — 64; // 64 bytes of shared memory

KernelFunc DimGrid, DimBlock, SharedMemBytes f(oaadp

e Any call fo a kernel function is asynchronous (CUDA 1.0 & later),
explicit synch needed for blocking

e Recursion in kernels supported (in 5.0/Kepler+)

Sample Code: Increment Array

nain () _t size = N*sizeof (float) ;

ah

for blockDimx —————— 4
/ allocate array on device blockidex 0 1 2
sdaMall %) sa_d, size); ———— ——

threadldxx [T D) =T

sdaMemcpyHostToDevice) ;

T (dx <) afith] = a1,

kemel

from device and store in b_h

izeof (£loat) *N, cudaMemcpyDeviceToH

__global__ void incrementArrayOnDevice (float *a,
int N)
{
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx<N) alidx] = a[idx]+l.f;
)

Execution model

Thread
0 ldentified by threadldx

Multiple levels of parallelism

o Thread block
— Max. 1024 threads/block
— Communication through Thread Block
shared memory (fust) Identified by blockldx
— Thread guaranteed to be residen
— threadIdx, blockIdx

— __syncthreads()
- barrier for this block only! Grid of Thread Blocks
avoid RAW/WAR/WAW hazards
when ref' shared/global memory

e Grid of thread blocks

— F<«nblocks, nthreads>>>(a, b, ¢)
Result data array

Compiling CUDA

e Call nvcc (driver) -- also C++/Fortra
o LLVM front end (used to be EDG) GpElication

— Separate GPU & CPU code
o LLVM back end (used to be Open64

— Generates GPU TPX assembly
o Parallel Threads eXecution (PTX) pTx Code

— Virtial machine and ISA

— Programming model

— Execution resources and state
o Extensions

— OpenACC: see ARC web page,

like OpenMP but for GPUs
— OpenCL (not covered here)

Target code

Single-Program Multiple-Data (SPMD)

e CUDA integrated CPU + GPU application C program
— Serial C code executes on CPU
— Parallel Kernel € code executes on GPU thread
blocks
CPU Serial Code i
Grid 0

GPU Parallel Kernel
KernelA<<< nBIk, nTid >>>(args);

CPU Serial Code

GPU Parallel Kernel
KernelB<<< nBIk, nTid >>>(args);

Hardware Implementation:
Execution Model

e Each thread block of agrid is splitinfo warps, each gets executed
by one multiprocessor (SM)

— The device processes only one grid at a fime
e Each thread block is executed by one multiprocessor
— So that the shared memory space resides in the on-chip shared
memory
e A multiprocessor can execute multiple blocks concurrently
— Shared memory and registers are partitioned among the threads of all
concurrent blocks
— So, decreasing shared memory usage (per block) and register usage
(per thread) increases number of blocks that can run concurrently

Threads, Warps, Blocks

There are (up to) 32 threads in a Warp
— Only <32 when there are fewer than 32 total threads

There are (up to) 32 Warps in a Block

Each Block (and thus, each Warp) executes on a single SM
GF110 has 16 SMs

At least 16 Blocks required to “fill" the device

More is better

— If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

More Terminology Review

device = 6PU = set of multiprocessors

Multiprocessor = set of processors & shared memory

Kernel = GPU program

6rid = array of thread blocks that execute a kernel

Thread block = group of SIMD threads that execute a kernel

and can communicate via shared memory

Memory Location Cached Access Who

Local Off-chip No Read/write One thread

Shared On-chip N/A - resident Read/write All threads in a block
Global Off-chip No Read/write All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

Access Times

Register - dedicated HW - single cycle
Shared Memory - dedicated HW - single cycle
Local Memory - DRAM, no cache - *slow*
Global Memory - DRAM, no cache - *slow*

Constant Memory - DRAM, cached, 1..10s..100s of cycles,
depending on cache locality

Texture Memory - DRAM, cached, 1..10s..100s of cycles,
depending on cache locality

Instruction Memory (invisible) - DRAM, cached

Memory Hierarchy

Thread

L0 e (2
Per-thread Per-block
Local Memory MShared
lemory

e (3) W w iequelntial
Per-device ermels
) Global
WW Memory

Device 0
e (4 memory

Host memory cudaMemcpy ()

Device 1
memory

Using per-block shared memory

Block

e Variables shared across block
int *begin, *end;

Per-block
Shared
Memory

e Scratchpad memory
shared int scratch[blocksize];
= begin|[

ratch val

scratch[thr

begin[threadIdx.x] = scratchl[eadIdx.x];

e Communicating values between threads
scratch[threadIdx.x] = begin[treadIdx.x];
syncth ;

s ()
int left = scratch[threadlidx.x - 1];

Example: Parallel Reduction

e Summing up a sequence with 1 thread:
int sum = 0;
for (int 1i=0; i<N; ++i) sum += x[1i];

o Parallel reduction builds a summation tree
— each thread holds 1 element

— stepwise partial sums ////
— N threads need log N steps
-
— one possible approach: >§§< ////
Butterfly pattern 1
X X X /
/

2

Parallel Reduction for 1 Block

// INPUT: Thread i holds value x_i
int i = threadIdx.x;
_ shared int sum[blocksize];
per element
reads (

for (int bit=blocksize/2; bit>0; bit/=2) %
{

int t=sum[i]+sum[i%bit]; _ reads (R R

sum[i]=t; o reads (X X XX
1

// OUTPUT: Every thread now ho

1lds sum in sun

Parallel Reduction Across Blocks

o Code lets B-thread block reduce B-element array

o For larger sequences:
— reduce each B-element subsequence with 1 block

— write N/B partial sums fo tfemporary array
— repeat until done

o P.S. this works for min, max, *, and friends too
— as written requires associative & commutative function

— can restructure to work with any associative function

Language Extensions

Built-in Variables
o dim3 gridDim;
— Dimensions of the grid in
blocks (gridDim.z unused)
o dim3 blockDim:
— Dimensions of the block in
threads
o dim3 blockIdx;
— Block index within the grid
o dim3 threadIdx;

— Thread index within the
block

Math Functions:
sin, cos, tan, asin, ...

Math device functions:
__sin, .. (faster, less accurate)

Atomic device functions:
atomicAdd(), atomicCAS(),...

— Can implement locks

In Kernel Memory
Management

malloc()
o free()

Tesla Architecture

Thread Execution Control Unit

Memory

Device Memory

e Used for Technical and Scientific Computing

e L1/L2 Data Cache
— Allows for caching of global and local data
— Same on-chip memory used for Shared and L1
— Configurable at kernel invocation

Fermi Architecture
o
Memory
- ez Coce
Device Memory
o L1 cache for each SM
— Shared memory/L1: use same memory
— Configurable partitions at kernel invocation
— 48KB shared/16KB L1 or 16KB shared/48KB L1
e Unified 768KB L2 Data Cache
— Services all load, store, and texture requests
Kepler Architecture

‘Computa Capability

‘Shared Memory Siza Confgurations (byter]

Mo Grid Dimension
[

ypera
Dynsmic Poraelim

o GK104/K10 early 2012)
— Configurable shared memory access bank width: 4 / 8 bytes
— cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte):
o GK110/K20 (late 2012)
— Dynamic parallelism, HyperQ, more regs/thread & DP throughput

CUDA Toolkit Libraries

NVIDIA GPU-accelerated math libraries:

cuFFT - Fast Fourier Transforms Library

cuBLAS - Complete BLAS library

cuSPARSE - Sparse Matrix library

cuRAND - Random Number Generation (RNG) Library

Performance improved since 3.1

For more info see

— bttp:/Zwew nvidio com/oblect/gtc2010-presentation-archive htr
CULA - linear algebra library (commercial add-on)

— Single precision version free, double costs $s
Thrust: C++ template lib > STL-like

— Boost-like saxpy:
thrust::transform(x.begin(), x.end(), y.begin(), y.begin(), a * _1 +_2);

Libraries & More

e Object linking

— Plug-ins, libraries
o Dynamic parallelism

— GPU threads can launch new kernels
e RDMA from GPU(nodel) - GPU(node2)

Server 1 Server 2

Tools

o Visual Profiler
— Where is the time spent?
e CUDA-gdb: debugger
o Parallel Nsight + Eclipse
— Debugger
— Memory checker
— Traces (CPU vs. GPU activity)
— Profiler (memory, instruction throughput, stall)
o Nvidia-smi
— Turn of f ECC
— Read performance counters

Timing CUDA Kernels

o Real-time Event APT
cudaEvent_t cstart, cstop:
float cdiff;
cudaEventCreate(&cstart);
cudaEventCreate(&cstop):
cudaEventRecord(cstart, 0)
kernel«<x,y,z>»(a,b,c,); I
cudaEventRecord(cstop, 0);
cudaEventSynchronize(cstop)
cudaEventElapsed Time(&cdiff, cstart, cstop);
Printf("CUDA time is %.3f usec\n", cdiff);
cudaEventDestroy(cstart);
cudaEventDestroy(cstop);

Device Capabilities

o Need fo compile for specific capability when needed
— Flags in Makefile
o Capability levels:
— 1.0: basic GPU (e.g., 8800 6TX)
— 1.1: 32-bit atomics in global memory (e.g., GTX 280)
— 1.2: 64-bit atomics in global+shared memory, warp voting
— 1.3: double precision floating point
-e.g., 6TX 280/6TX 480, C1060/C€1070, €2050/€2070
— 2.0: caches for global+shared memory
-e.g., 6TX 480, C2050/C2070
— 3.0: more wraps, threads, blocks, registers...
-E.g., 6TX 680
— 3.5: Dynamic parallelism, HyperQ
-E.g., Tesla K20?

OpenACC

o Pragma-based Industry standard, the "OpenMP for GPUs", V1.0
— #pragma acc [clause]
— For GPUs but also other accelera
— For CUDA but also OpencL... OpenAcCC.

o Data movement: sync/async DIRECTIVES FOR ACCELERATORS

o Parallelism

o Data layout and caching
e Scheduling

o Mixes w/ MPI, OpenMP
e Works with C, Fortran

OpenACC Kernel Example

e CPU e GPU

void domany(...){ void saxpy(int n, float a,
float* x, float*

#pragma acc data \ restrict y){

copy (x[0:n],y[0:n]) int 1i;

saxpy(n, a, x, ¥y)i #pragma acc kernels loop \

} present (x[0:n], y[0:n])
for(i = 1; i < n; ++i)
yli] += a*x[i];

OpenACC Execution Constructs

e kernels [clauses...] \n { structured block}
— Run kernel on GPU
— if (cond): only exec if cond is true
— async: do not block when done

e Loop [clauses...]
— run iterations of loop on GPU
— collapse(n): for next n loop nests
— seq: sequential execution!
— private (list): private copy of vars

— firstprivate (list): copyin private

e Wait: barrier

e update [clauses..]
— host (list): copy > CPU
— device (list): copy > GPU

— if/async: as before

— reduction (op:list): =*|"&,&&,||,min/max

— gang/worker: scheduling options
— vector: SIMD mode

— independent: iterations w/o hazards

OpenACC Data Constructs

e data [clau:] \n {structure block}

— Declare data for GPU memory

— if/async: as before

Clauses:

copy(list): Allocates list on GPU,
copies data CPU->GPU when entering
kernel and GPU->CPU when done
copyin(list): same but only
CPU>GPU

copyout(list): same but only
GPU->CPU

create(list): only allocate

present(list): data already on GPU (no
copy)

present_or_copy[in/out[(list): if not
present then copy [in/out]
present_or_create(list): if not present
then allocate

deviceptr(list): lists pointers of device
addresses, such as from acc_malloc.

OpenACC Update

e CPU e GPU

for (timestep=0;...){ tpragna acc data copy(x[0:n])...
- - -compute. .. for(timestep=0;...){
...compute on device...
#pragma update host (x[0:n]) =>CPU
MPI SENDRECV(X, ...) MPI_SENDRECV(%, ...)
- #pragma update device (x[0:n])>GPU
...adjust on device

...adjust... ...)

OpenACC Async

e CPU e GPU
void domany(...){ void saxpy(int n, float a,
float* x, float* restrict y
#pragma acc data \) {
create (x[0:n],y[0:n]) int i;
{

#pragma acc update device \ #pragma acc kernels loop async

(x[0:n], y[0:n]) async for(i = 1; 1 < n; ++1i
saxpy(n, a, x, y)i y[i] += a*x[i];
#pragma acc update host \
(y[0:n]) async }

#pragma acc wait

}

OpenACC Data Caching

o Uses shared memory (SM / scratch pad memory)

#pragma acc kernels

op present (a[:] [js-1:je+l],b[:][Js-1:3s+1])

for(j s; 3 <= je; j++)
for (i = 2; i <= n-1; i++)
#pragma acc cache (b[i-1:i+1][j-1:9+1])
alil(j] = blil[§] +

w * (b[i-1]0] + b[i+1][3] + b[i][3-1] + b[i][j+1]

OpenACC Parallel / Loop (for)

e GPU Parallel e GPU Loop
#pragma acc parallel \ void saxpy(int n, float a,
copy (x[0:n],y[0:n]) float* x, float*

{ restrict y){
saxpy(n, a, %, y); int i;
}
#pragma acc loop
for(i = 1; 1 < n; ++i)
yli] += a*x[i];

OpenACC Runtime Constructs

e #include "openacc.h™

acc_malloc(size_t)

acc_free(void*)

acc_async_test(expression)

acc_async_test_all()

acc_async_wait(expression)

acc_async_wait_all()

Cray OpenACC

Directives, Options, Restructuring —

HPC ’

CFT /
Code g
A Y P)
This Feedback Loop

Unique to Compilers! ~ ‘ profler

We can use this same y to enable
igration of applicati to Multi- e and A

PGI OpenACC

HPC
Code

Directives, Options, RESTRUCTURING —

—

”
>
BB

Restructuring for

Accelerators will + ‘ ‘ PGPROF
be More Difficult cc

=2

