Lecture 2

Message Passing
Using MPI

(Foster Chapter 8)

CSC 591C
Outline
e Background o Extended point-to-point
— The message-passing model operations
— Origins of MPT and current — non-blocking communication
status — modes
— Sources of further MPT o Advanced MPI topics
information — Collective operations
o Basics of MPI message passing — More on MPI data types
— Hello, World! — Application topologies
— Fundamental concepts — The profiling interface
— Simple examples in Fortran o Toward a portable MPT
and environment
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The Message-Passing Model

e Aprocess is (traditionally) a program counter and address space
o Processes may have multiple threads
— program counters and associated stacks
— sharing a single address space.
e MPI is for communication among processes
> separate address spaces
o Interprocess communication consists of
— Synchronization

— Movement of data from one process'’s address space to
another's.
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Types of Parallel Computing Models

o DataParallel
— the same instructions are carried out simultaneously on
multiple data items (SIMD)

o Task Parallel
— different instructions on different data (MIMD)

e SPMD (single program, multiple data)
— not synchronized at individual operation level

e SPMD is equivalent to MIMD since each MIMD program can be
made SPMD (similarly for SIMD, but not in practical sense)

Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of a SIMD interface.
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Message Passing

o Basic Message Passing:
— Send: Analogous to mailing a letter
— Receive: Analogous to picking up a letter from the mailbox
— Scatter-gather: Ability fo “scatter” data items in a message
into multiple memory locations and “gather” data items from
multiple memory locations into one message

o Network performance:
— Latency: The time from when a Send is initiated until the
first byte is received by a Receive.
— Bandwidth: The rate at which a sender is able to send data to

a receiver.
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Basic Message Passing Issues

o Issues include:

— Naming: How tfo specify the receiver?

— Buffering: What if the out port is not available? What if the
receiver is not ready to receive the message?

— Reliability: What if the message is lost in transit? What if
the message is corrupted in transit?

— Blocking: What if the receiver is ready fo receive before the
sender is ready to send?
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Cooperative Operations for Communication

message-passing approach > cooperative exchange of data

data explicitly sent by one process and received by another

Advantage: any change in receiving process's memory is made
with receiver's explicit participation

Communication and synchronization are combined

Push model (active data transfer)

v

Process 0 Process 1

Send (data)

Receive (data)
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One-Sided Operations for Communication

One-sided operations b/w processes include
remote memory reads and writes

Only one process heeds to explicitly participate

An advantage is that communication and synchronization are
decoupled

One-sided operations are part of MPI-2.
Pull model (passive data transfer) for get

v

Process 0 Process 1
Put (data)
(memory)
(memory)
Get (data)
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Collective Communication

e More than two processes involved in communication
— Barrier
— Broadcast (one-to-all), multicast (one-to-many)
— All-to-all
— Reduction (all-to-one)
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Broadcast and Multicast

Broadcast Multicast
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All-to-All
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What is MPI?

o A message-passing library specification (an API)
— extended message-passing model
— not a language or compiler specification
— not a specific implementation or product
o For parallel computers, clusters, and heterogeneous networks
o Full-featured
o Designed to provide access to advanced parallel hardware for
— end users
— library writers
— tool developers
» Portability
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MPI Sources

e Standard: http://www.mpi-forum.org

o Books:

— Using MPT: Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press,
1994.

— MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

— Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

— Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

— MPT: The Complete Reference Vol 1 and 2, MIT Press,
1998(Fall).

o Other information on Web http://www.mcs.anl.gov/mpi
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MPI History

e 1990 PVM: Parallel Virtual Machine (Oak Ridge Nat'l Lab)
— Message-passing routines
— Execution environment (spawn + control parallel processes)
— No an industry standard

1992 meetings (Workshop, Supercomputing'92)

1993 MPT draft

1994 MPI Forum (debates)

1994 MPI-1.0 release (C & Fortran bindings) + standardization
1995 MPI-1.1 release

1997 MPI-1.2 release (errata) +
MPI-2 release (new features, C++ & Fortran 90 bindings)

o 2222 MPI-3 release (hew: FT, hybrid, p2p, RMA, ..)
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Why Use MPI?

o MPI provides a powerful, efficient, and portable way to express
parallel programs

o MPI was explicitly desighed fo enable libraries...
o .. which may eliminate the need for many users to learn (much of)
MPT

o Ifs the industry standard!
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A Minimal MPI Program

InC: In Fortran:
#include "mpi.h" program main
#include <stdio.h> use MPI

integer ierr
int main(int argc,

char *argv[]) call MPI_INIT( ierr )

{ print *, 'Hello, world!'
MPI_Init (&argc, &argv); call MPI_FINALIZE( ierr )
printf ("Hello, world!\n"); end
MPI_Finalize();
return 0;

}
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Notes on C and Fortran

e Cand Fortran bindings correspond closely
e InC:

— mpi.h must be #included

— MPT functions return error codes or MPI_SUCCESS
e InFortran:

— mpif.h must be included, or use MPT module (MPI-2)

— All MPI calls are to subroutines, with a place for the return
code in the last argument.

e C++ bindings, and Fortran-90 issues, are part of MPI-2.
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Error Handling

By default, an error causes all processes to abort.

The user can cause routines to return (with an error code)
instead.

— In C++, exceptions are thrown (MPI-2)

A user can also write and install custom error handlers.

Libraries might want to handle errors differently from
applications.
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Running MPI Programs

The MPI-1 Standard does hot specify how to run an MPI program
(just as the Fortran standard does not specify how fo run a
Fortran program)

In general, starting an MPI program is dependent on the
implementation of MPI you are using
— might require scripts, program arguments, and/or
environment variables

e mpirun <args> is part of MPI-2, as a recommendation, but not
a requirement
— You can use mpirun/mpiexec for MPICH
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Finding Out About the Environment

e Two important questions that arise in a parallel program are:
—How many processes are participating in this
computation?
— Which one am I?
o MPI provides functions fo answer these questions:
— MPI_Comm_size reports the humber of processes.
— MPI_Comm_rank reports the rank, a number between 0 and
size-1, identifying the calling process
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Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI_Init( &argc, &argv );
MPI_Comm_ rank( MPI_COMM WORLD, &rank );
MPI_Comm size( MPI_COMM WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI_Finalize();
return 0;
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Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT( ierr )
call MPI_COMM RANK( MPI_COMM WORLD, rank, ierr )
call MPI_COMM SIZE( MPI_COMM WORLD, size, ierr )

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE( ierr )

end
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MPI Basic Send/Receive

e We need to fill in the details in

Process 0 Process 1

Send (data)

Receive (data)

o Things that need specifying:
— How will "data” be described?
— How will processes be identified?
— How will the receiver recognize/screen messages?
— What will it mean for these operations fo complete?
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What is message passing?

o Data transfer plus synchronization
— if it is blocking message passing

Process 1 Yes

Time

o Requires cooperation of sender and receiver

e Cooperation not always apparent in code
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Some Basic Concepts

Processes can be collected into groups.

Each message is sent in a context and must be received in the
same context
— Tag relative to context (discussed later)

A (group, context) form a communicator.

A process is identified by its rank in the group associated with a
communicator

There is a default communicator whose group contains all initial
processes, called MPI_COMM_WORLD
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MPI Datatypes

o datain a message described by a triple

(address, count, datatype), where

e An MPI datatype is recursively defined as:

— predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

— a contiguous array of MPI datatypes

— astrided block of datatypes

— an indexed array of blocks of datatypes
— an arbitrary structure of datatypes

o There are MPI functions to construct custom datatypes, such an
array of (int, float) pairs, or a row of a matrix stored columnwise
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MPI Tags

o Messages sent with an accompanying user-defined integer tag
— to assist the receiving process in identifying the message
o Messages can be screened (filtered) at the receiving end
— by specifying a specific tag,
— or not screened by specifying MPI_ANY_TAG as the tag

o Note: Some non-MPI message-passing systems have called tags
“message types”. MPI calls them tags to avoid confusion with
datatypes.
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MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

o message buffer is described by (start, count, datatype).
e target process is specified by dest

— rank of target process in communicator specified by comm
o When this function returns, the data has been delivered

— buffer can be reused

— but msg may not have been received by target process (yet)
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MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

waits until a matching (on source and tag) message is received
— buffer can be used

source is rank in communicator specified by comm, or
MPI_ANY SOURCE

status contains further information

Receiving fewer than count occurrences of datatype is OK
— but receiving more is an error
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Retrieving Further Information

e Status is a dafa structure allocated in the user's program.
e InC:
int recvd_tag, recvd from, recvd count;
MPI_Status status;
MPI_Recv(..., MPI_ANY SOURCE, MPI_ANY TAG, ..., &status )
recvd tag = status.MPI_TAG;
recvd from = status.MPI_SOURCE;
MPI_Get count( &status, datatype, &recvd count );
e InFortran:
integer recvd_tag, recvd from, recvd_count
integer status (MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY SOURCE, MPI_ANY TAG, .. status, ierr)
tag_recvd = status (MPI_TAG)
recvd from = status (MPI_SOURCE)

call MPI_GET COUNT(status, datatype, recvd count, ierr)
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Simple Fortran Example

program main
use MPI

integer rank, size, to, from, tagl0
integer count, i, ierr

integer src, dest

integer st_source, st_tag, st_count
integer status (MPI_STATUS_SIZE)
double precision data(10)

call MPI_INIT( ierr )

call MPI_COMM RANK( MPI_COMM_WORLD,

+ rank, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORILD,

+ size, ierr )

print *, 'Process ', rank, ' of ',
size, ' is alive'

dest = size - 1

src =0
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if (rank .eq. 0) then
10

do 10, i=:
data(i) = i

continue

call MPI_SEND( data, 10, MPI_DOUBLE_PRECISION,
+ dest, 2001, MPI_COMM WORLD, ierr)
else if (rank [leq. dest) then

tag = MPI 2 AG

source = MP! SOURCE

call MPI_RECV( data, 10, MPI_DOUBLE_PRECISION,
source, tag, MPI_COMM_WORLD,
+ status, ierr)
call MPI_GET_COUNT( status, MPI_DOUBLE PRECISION,
st_count, ierr )

st_source = status( MPI_SOURCE )

st_tag = status( MPI_TAG )

print *, 'status info: source = ', st_source,
+ ' tag = ', st tag, 'count = ', st_count
endif

call MPI_FINALIZE( ierr )
end

Why Datatypes?

o Since all datais labeled by type, an MPI implementation can
support communication between processes on machines with very
different memory representations and lengths of elementary
datatypes (heterogeneous communication)

o Specifying application-oriented layout of data in memory
— reduces memory-to-memory copies in the implementation
— allows the use of special hardware (scatter/gather) when

available
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Basic C Datatypes in MPI

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_ CHAR

unsigned char

MPI_UNSIGNED_ SHORT

unsigned short int

MPI_UNSIGNED_ INT

unsigned int

MPI_UNSIGNED_ LONG

unsigned long int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED

CSC 591C
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Tags and Contexts

o Separation of msgs used to be accomplished by use of tags, but
— requires libraries to be aware of tags used by other libraries
— can be defeated by use of "wild card” tags

o Contexts are different from tags
— no wild cards allowed
— allocated dynamically by the system when a library sets up a

communicator for its own use
o User-defined tags still provided in MPI for user convenience in
organizing application

e Use MPI_Comm_split fo create hew communicators
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MPI is Simple

® Many parallel programs can be written using just these six
functions, only two of which are non-trivial:

— MPI_INIT

— MPI_FINALIZE

— MPI_COMM_SIZE

— MPI_COMM RANK

— MPI_SEND

— MPI_RECV

o Point-to-point (send/recv) isn't the only way...
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Introduction to Collective Operations in MPI

e Collective ops are called by all processes in a communicator.
— No tags
— Blocking
e MPI_BCAST disfributes data from one process (the root) fo all
others in a communicator.

e MPI_REDUCE/ALLREDUCE combines data from all processes in
communicator and returns it fo one process.

In many numerical algorithms, SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.
Others:

— MPI_[ALL]SCATTER[V]/ [ALL]GATHER[V]

CSC 591C k]
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Collectives at Work
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Collectives at Work (2)
o Reduce: o Predefined Ops (assocociative &
RANK commutative) / user ops (assoc.)
AeED MPI Name Function
0 - MPI_MAX Maximum
MPI_MIN Minimum
1 MPI_SUM Sum
MPI_REDUCE MPI_PROD Product
2 MPI_LAND Logical AND
MPI_BAND Bitwise AND
3 MPI_LOR Logical OR
MPI_BOR Bitwise OR
" MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
/ MPI_MAXLOC | Maximum & location
MPI_MINLOC Minimum & location
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Collectives at Work (3)
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Example: Plin C

#include "mpi.h" h =1.0/ (double) n;
sum = 0.0;

#include <math.h> for (immyidtl; i<

it=numprocs) {

int main(int arge, char *argv[]) x =h * ((double)i - 0.5);
sum 4+= 4.0 / (1.0 + x*x);
{ }
int done = 0, n, myid, numprocs, i, rc; mypi = h * sum;

double PI25DT =
3.141592653589793238462643;
double mypi, pi, h, sum, x, a; MPI_DOUBLE, MPI_SUM, 0
MPI_Init(sargc,sargv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;
while ('done) {

if (myid == 0) { %.16£, Error is %.16f\n",

printf ("Enter the number of pi, fabs(pi - PI25DT));

MPI_Reduce (&mypi, &pi, 1,

MPI_COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately

intervals: (0 quits) "); r)uar Finalize();
scanf("¥d", &n) ; -
} return 0;
MPI_Bcast(sn, 1, MPI_INT, O,

MPI_COMM_WORLD) ;
if (n == 0) break;
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Approximation of Pi

Integration to evaluate =
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Example: Pl in Fortran

Progran main

use MPT
double precision PI25DT

125DT = 3.141
double precision mypi, pi, h, sum, X, £, a
integer n, myid, numprocs, i, ierr
function to integrate

3d0)

£(a) = 4.d0 / (1.d0 + a*a)
call MPI INIT( ierr )
call MPI_COMM RANK( MPI_COMM WORLD, myid, ierr )
call MPI_COMM_SIZE( MPI_COMM WORLD, numprocs, ierr )
10 if ( myid .eq. 0 en”

write (6,98)

98 format ('Enter the number of intervals: (0 quits)')
read(5,99) n
99 format (110)

endif

call MPI_BCAST( n, 1, MPI_INTEGER, 0,

+ - MPI_COMM_WORLD, ierr) .
Gheck for quit signal

if (n .le. 0 ) goto 30 A < the answer &4 o

calculate the interval size fouli i PP
h =1.0d0/n
sum = 0.0d0

97 format(' pi is approximately:
s i F18.16
do 20 i = myid+l, n, numprocs : \ ies o
x b F@iad ootsasy F onate Error is: ', F18.16)
B sum + £ (x)
20 continue

to 10
Ho 30 call MPI_FINALIZE (ierr)
mypi = h * sum povry !
collect all the partial sums
call MPI_REDUCE( mypi, pi, 1, MPI DOUBLE PRECISION,
+ MPT.

_SUM, 0, MPI_COMM_WORID, ierr)
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node 0 prints

( ) then
write(6, 97) pi, abs(pi - PI25DT

Alternative 6 Functions for Simplified MPI

— MPI_INIT

— MPI_FINALIZE
— MPI_COMM_SIZE
— MPI_COMM_RANK
— MPI_BCAST

— MPI_REDUCE

o What else is needed (and why)?
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Sources of Deadlocks

e Send a large message from process O to process 1
— If there is insufficient storage at the destination,
send must wait for user to provide memory space (via a receive)
o What happens with

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

+ This is called “unsafe” because it depends on the
availability of system buffers

CSC 591C
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Some Solutions to the “unsafe” Problem

e Order operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)
e Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend(0)
Irecv(1l) Irecv(0)
Waitall Waitall

® How about races?

— Mulftiple recv processes w/ wildcard MPI_ANY_SOURCE
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Optimization by Non-blocking Communication

o Non-blocking operations work, but:

Process 0 Process 1
Isend (1) Isend(0)
Irecv(l) Irecv(0)
Waitall Waitall

e May want fo reverse send/receive order: (Why?)
Process 0 Process 1
Irecv(1l) Irecv(0)
Isend (1) Isend(0)
Waitall Waitall
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Communication and Blocking Modes

e Communication modes:

— Std: init send w/o recv
— Ready: send iff recv ready

— Sync: see Std but send only

completes if recv OK

— Buf: see Std but reserves
place to put data

— MPI_Buffer_attach/detach

o Nonblocking completed?
— MPI_Wait/Test

— MPI_Waitall/any/some

e Send+Recv w/ same/diff buffer

Send Blocking Nonblocking
Standard MPI_Send MPI_Isend

Ready MPI_Rsend | MPI_Irsend
Synchronous | MPI_Ssend | MPI_Issend
Buffered MPI_Bsend | MPI_Ibsend
Receive Blocking Nonblocking
Standard MPI_Recv MPI_Irecv

— MPI_Sendrecv

— MPI_Sendrecv_replace
CSC 591C
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Communicators

e Alternative to avoid deadlocks:
— Use different communicators
— Offten used for different libraries

e Group: MPI_Comm_group, MPI_Comm_incl
o Context: for a group: MPI_Comm_create
e How about multicast?
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Toward a Portable MPI Environment

e MPICH: high-performance portable implementation of MPI (1+2)
e runs on MPP's, clusters, and heterogeneous networks of
workstations

o Inawide variety of environments, one can do:

configure

make

mpicc -mpitrace myprog.c

mpirun -np 10 myprog

or: mpiexec -n 10 myprog

to build, compile, run, and analyze performance

o Others: LAM MPI, OpenMPI, vendor X MPL
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Extending the Message-Passing Interface

o Dynamic Process Management
— Dynamic process startup
— Dynamic establishment of connections
o One-sided communication
— Put/get
— Other operations
e Parallel I/0
e Other MPI-2 features
— Generalized requests
— Bindings for C++/ Fortran-90; inferlanguage issues

CSC 591C 5
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Profiling Support: PMPI

o Profiling layer of MPT
o Implemented via additional API in MPI library

— Different name: PMPI_Init() MPI_Init(.) {

— Same functionality as MPI_Init() collect pre stats;
o Allows user to: PMPI_Init(.);

— define own MPI_Init() collect post stats;

— Need to call PMPI_Init(): }

o User may choose subset of MPI routines to be profiled

o Useful for building performance analysis tools
— Vampir: Timeline of MPI traffic (Etnus, Inc.)
— Paradyn: Performance analysis (U. Wisconsin)
— mpiP: J. Vetter (LLNL)
— ScalaTrace: F. Mueller et al. (NCSU)
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When to use MPI

o Portability and Performance
o Irregular Data Structures

o Building Tools for Others
— Libraries

o Need fo Manage memory on a per-processor basis
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When not (necessarily) to use MPI

o Regular computation matches HPF

— But see PETSc/HPF comparison (LCASE 97-72)
e Solution (e.g., library) already exists

— http://www.mes.anl.gov/mpi/libraries.html

o Require Fault Tolerance
— Sockets
— will see other options (research)
e Distributed Computing
— CORBA, DCOM, etc.
e Embarrassingly parallel data division
— Google map-reduce

CSC 591C 5
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Is MPI Simple?

o We said: Many parallel programs can be written using just these
six functions, only two of which are non-trivial:
— MPI_INIT —MPI_COMM_SIZE —MPI_SEND
— MPI_FINALIZE —MPI_COMM RANK —MPI_RECV

o Empirical study for large-scale benchmarks shows (IPDPS'02):
Routines sPPM  SMG2000 SPHOT Sweep3D Samrai

MPI_Allreduce X X X X
MPI_Barrier X
MPI_Bcast X
MPI_lrecv X
MPI_lsend
MPI_Recv X
MPI_Reduce
MPI_Send
MPI_Test
MPI_Wait X
MPI_Waitall

CSC 591C

X x

X x
X x

X x

X x
X x

Summary

o parallel computing community has cooperated on development of
> standard for message-passing libraries

e many implementations, on nearly all platforms
o MPI subsets are easy to learn and use
o Lots of MPI material available

e Trends to adaptive computation (adaptive mesh refinement)
— Add'| MPT routines may be needed (even MPI-2 sometimes)
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Before MPI-2

1995 user poll showed:
o Diverse collection of users
o All MPI functions in use, including “obscure” ones.
o Extensions requested:
—parallel I/0
— process management
— connecting to running processes
—put/get, active messages
— interrupt-driven receive
— hon-blocking collective
— C++ bindings
— Threads, odds and ends

CSC 591C
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MPI-2 Origins

e Began meeting in March 1995, with
—veterans of MPI-1
— hew vendor participants (especially Cray and SGI, and Japanese
manufacturers)
e Goals:
— Extend computational model beyond message-passing
— Add new capabilities
—Respond to user reaction to MPI-1
o MPI-11 released in June 1995 with MPI-1 repairs, some bindings
changes
e MPI-1.2 and MPI-2 released July 1997

o Implemented in most (all?) MPI libraries today
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Contents of MPI-2

o Extensions to the message-passing model
—Parallel I/0
— One-sided operations
— Dynamic process management

e Making MPT more robust and convenient
— C++ and Fortran 90 bindings
— Extended collective operations
— Language interoperability
— MPT interaction with threads
—External interfaces

CSC 591C &

MPI-2 Status Assessment

o All MPP vendors now have MPI-1. Free implementations (MPICH,
LAM) support heterogeneous workstation networks.

e MPI-2 implementations are in for most (all?) Vendors.

e MPI-2 implementations appearing piecemeal, with I/0 first.
—1I/0 available in most MPI implementations
— One-sided available in most (may still depend on
interconnect, e.g., Infiniband has it, Ethernet may have it.)
—parts of dynamic and one-sided in LAM/OpenMPI/MPICH

CSC 591C ]
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Dynamic Process Management in MPI-2

o Allows an MPI job fo spawn new processes at run time and
communicate with them

o Allows two independently started MPI applications to establish
communication

CSC 591C o

Starting New MPI Processes

® MPI_Comm_spawn
— Starts n new processes
— Collective over communicator
-Necessary for scalability
— Returns an intercommunicator
-Does not change MPI_COMM_WORLD
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Connecting Independently Started
Programs

® MPI_Open_port, MPI_Comm_connect, MPI_Comm_accept allow two
running MPT programs to connect and communicate
— Not intended for client/server applications
— Designed to support HPC applications
e MPI_Join allows the use of a TCP socket fo connect two applications
e Important for multi-scale simulations
— Connect multiple independent simulations, combine calculations
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One-Sided Operations: Issues

Balancing efficiency and portability across a wide class of
architectures

— shared-memory multiprocessors

—NUMA architectures

—distributed-memory MPP's, clusters

— Workstation networks

Retaining “look and feel” of MPI-1

Dealing with subtle memory behavior issues: cache coherence,
sequential consistency

Synchronization is separate from data movement

CSC 591C

Remote Memory Access Windows and
Window Obijects

Process 0 Process 1

window

Process 2 Process 3

O
cm: = address spaces 5 g - window object

One-Sided Communication Calls

e MPI_Put - storesinto remote memory
® MPI_Get - reads from remote memory
e MPI_Accumulate - combined local/remote memory
— like reduction, need to specify "op”, e.g., MPT_SUM

All are non-blocking: data transfer is described, maybe even
initiated, but may continue after call returns

Subsequent synchronization on window object is needed fo
ensure operations are complete, e.g., MPI_Win_fence
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