Lecture 2

Message Passing
Using MPI

(Foster Chapter 8)

CSC 591C
Outline
e Background o Extended point-to-point
— The message-passing model operations
— Origins of MPT and current — non-blocking communication
status — modes
— Sources of further MPT o Advanced MPI topics
information — Collective operations
o Basics of MPI message passing — More on MPI data types
— Hello, World! — Application topologies
— Fundamental concepts — The profiling interface
— Simple examples in Fortran o Toward a portable MPT
and environment
CSC 591C

The Message-Passing Model

e Aprocess is (traditionally) a program counter and address space
o Processes may have multiple threads
— program counters and associated stacks
— sharing a single address space.
e MPI is for communication among processes
> separate address spaces
o Interprocess communication consists of
— Synchronization

— Movement of data from one process'’s address space to
another's.

CSC 591C

Types of Parallel Computing Models

o DataParallel
— the same instructions are carried out simultaneously on
multiple data items (SIMD)

o Task Parallel
— different instructions on different data (MIMD)

e SPMD (single program, multiple data)
— not synchronized at individual operation level

e SPMD is equivalent to MIMD since each MIMD program can be
made SPMD (similarly for SIMD, but not in practical sense)

Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of a SIMD interface.

CSC 591C 4

Message Passing

o Basic Message Passing:
— Send: Analogous to mailing a letter
— Receive: Analogous to picking up a letter from the mailbox
— Scatter-gather: Ability fo “scatter” data items in a message
into multiple memory locations and “gather” data items from
multiple memory locations into one message

o Network performance:
— Latency: The time from when a Send is initiated until the
first byte is received by a Receive.
— Bandwidth: The rate at which a sender is able to send data to

a receiver.
CSC 591C
Scatter-Gather
Scatter (Receive) Gather (Send)
Message Message

Memory Memory

CSC 591C

Basic Message Passing Issues

o Issues include:

— Naming: How tfo specify the receiver?

— Buffering: What if the out port is not available? What if the
receiver is not ready to receive the message?

— Reliability: What if the message is lost in transit? What if
the message is corrupted in transit?

— Blocking: What if the receiver is ready fo receive before the
sender is ready to send?

CSC 591C 4

Cooperative Operations for Communication

message-passing approach > cooperative exchange of data

data explicitly sent by one process and received by another

Advantage: any change in receiving process's memory is made
with receiver's explicit participation

Communication and synchronization are combined

Push model (active data transfer)

v

Process 0 Process 1

Send (data)

Receive (data)

CSC 591C 8

One-Sided Operations for Communication

One-sided operations b/w processes include
remote memory reads and writes

Only one process heeds to explicitly participate

An advantage is that communication and synchronization are
decoupled

One-sided operations are part of MPI-2.
Pull model (passive data transfer) for get

v

Process 0 Process 1
Put (data)
(memory)
(memory)
Get (data)

CSC 591C L]

Collective Communication

e More than two processes involved in communication
— Barrier
— Broadcast (one-to-all), multicast (one-to-many)
— All-to-all
— Reduction (all-to-one)

CSC 591C
Barrier
Compute
Compute P Compute
Compute
Barrier

Comp Comp Comp Comp

CSC 591C i

Broadcast and Multicast

Broadcast Multicast

CSC 591C

All-to-All

CSC 591C “
Reduction

sum < 0 A+ am 3N

fori _1topdo AOL AT AR+ ABIE ~—an

sum « sum + A[i]

ANy °

o = @
AB)

v ° 'D

Fapap AR
—ap)

A1+ AB]

CSC 591C

What is MPI?

o A message-passing library specification (an API)
— extended message-passing model
— not a language or compiler specification
— not a specific implementation or product
o For parallel computers, clusters, and heterogeneous networks
o Full-featured
o Designed to provide access to advanced parallel hardware for
— end users
— library writers
— tool developers
» Portability

CSC 591C

MPI Sources

e Standard: http://www.mpi-forum.org

o Books:

— Using MPT: Portable Parallel Programming with the Message-
Passing Interface, by Gropp, Lusk, and Skjellum, MIT Press,
1994.

— MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996.

— Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

— Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

— MPT: The Complete Reference Vol 1 and 2, MIT Press,
1998(Fall).

o Other information on Web http://www.mcs.anl.gov/mpi
CSC 591C 16

MPI History

e 1990 PVM: Parallel Virtual Machine (Oak Ridge Nat'l Lab)
— Message-passing routines
— Execution environment (spawn + control parallel processes)
— No an industry standard

1992 meetings (Workshop, Supercomputing'92)

1993 MPT draft

1994 MPI Forum (debates)

1994 MPI-1.0 release (C & Fortran bindings) + standardization
1995 MPI-1.1 release

1997 MPI-1.2 release (errata) +
MPI-2 release (new features, C++ & Fortran 90 bindings)

o 2222 MPI-3 release (hew: FT, hybrid, p2p, RMA, ..)

CSC 591C "

Why Use MPI?

o MPI provides a powerful, efficient, and portable way to express
parallel programs

o MPI was explicitly desighed fo enable libraries...
o .. which may eliminate the need for many users to learn (much of)
MPT

o Ifs the industry standard!

CSC 591C 18

A Minimal MPI Program

InC: In Fortran:
#include "mpi.h" program main
#include <stdio.h> use MPI

integer ierr
int main(int argc,

char *argv[]) call MPI_INIT(ierr)

{ print *, 'Hello, world!'
MPI_Init (&argc, &argv); call MPI_FINALIZE(ierr)
printf ("Hello, world!\n"); end
MPI_Finalize();
return 0;

}

CSC 591C 19

Notes on C and Fortran

e Cand Fortran bindings correspond closely
e InC:

— mpi.h must be #included

— MPT functions return error codes or MPI_SUCCESS
e InFortran:

— mpif.h must be included, or use MPT module (MPI-2)

— All MPI calls are to subroutines, with a place for the return
code in the last argument.

e C++ bindings, and Fortran-90 issues, are part of MPI-2.

CSC 591C 2

Error Handling

By default, an error causes all processes to abort.

The user can cause routines to return (with an error code)
instead.

— In C++, exceptions are thrown (MPI-2)

A user can also write and install custom error handlers.

Libraries might want to handle errors differently from
applications.

CSC 591C 2

Running MPI Programs

The MPI-1 Standard does hot specify how to run an MPI program
(just as the Fortran standard does not specify how fo run a
Fortran program)

In general, starting an MPI program is dependent on the
implementation of MPI you are using
— might require scripts, program arguments, and/or
environment variables

e mpirun <args> is part of MPI-2, as a recommendation, but not
a requirement
— You can use mpirun/mpiexec for MPICH

CSC 591C 2

Finding Out About the Environment

e Two important questions that arise in a parallel program are:
—How many processes are participating in this
computation?
— Which one am I?
o MPI provides functions fo answer these questions:
— MPI_Comm_size reports the humber of processes.
— MPI_Comm_rank reports the rank, a number between 0 and
size-1, identifying the calling process

CSC 591C 2

Better Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_ rank(MPI_COMM WORLD, &rank);
MPI_Comm size(MPI_COMM WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

CSC 591C 2

Better Hello (Fortran)

program main
use MPI
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM RANK(MPI_COMM WORLD, rank, ierr)
call MPI_COMM SIZE(MPI_COMM WORLD, size, ierr)

print *, 'I am ', rank, ' of ', size

call MPI_FINALIZE(ierr)

end

CSC 591C E

MPI Basic Send/Receive

e We need to fill in the details in

Process 0 Process 1

Send (data)

Receive (data)

o Things that need specifying:
— How will "data” be described?
— How will processes be identified?
— How will the receiver recognize/screen messages?
— What will it mean for these operations fo complete?

CSC 591C %

What is message passing?

o Data transfer plus synchronization
— if it is blocking message passing

Process 1 Yes

Time

o Requires cooperation of sender and receiver

e Cooperation not always apparent in code

CSC 591C kd

Some Basic Concepts

Processes can be collected into groups.

Each message is sent in a context and must be received in the
same context
— Tag relative to context (discussed later)

A (group, context) form a communicator.

A process is identified by its rank in the group associated with a
communicator

There is a default communicator whose group contains all initial
processes, called MPI_COMM_WORLD

CSC 591C 2

MPI Datatypes

o datain a message described by a triple

(address, count, datatype), where

e An MPI datatype is recursively defined as:

— predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

— a contiguous array of MPI datatypes

— astrided block of datatypes

— an indexed array of blocks of datatypes
— an arbitrary structure of datatypes

o There are MPI functions to construct custom datatypes, such an
array of (int, float) pairs, or a row of a matrix stored columnwise

CSC 591C 2

MPI Tags

o Messages sent with an accompanying user-defined integer tag
— to assist the receiving process in identifying the message
o Messages can be screened (filtered) at the receiving end
— by specifying a specific tag,
— or not screened by specifying MPI_ANY_TAG as the tag

o Note: Some non-MPI message-passing systems have called tags
“message types”. MPI calls them tags to avoid confusion with
datatypes.

CSC 591C k)

10

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

o message buffer is described by (start, count, datatype).
e target process is specified by dest

— rank of target process in communicator specified by comm
o When this function returns, the data has been delivered

— buffer can be reused

— but msg may not have been received by target process (yet)

CSC 591C ki

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

waits until a matching (on source and tag) message is received
— buffer can be used

source is rank in communicator specified by comm, or
MPI_ANY SOURCE

status contains further information

Receiving fewer than count occurrences of datatype is OK
— but receiving more is an error

CSC 591C @

Retrieving Further Information

e Status is a dafa structure allocated in the user's program.
e InC:
int recvd_tag, recvd from, recvd count;
MPI_Status status;
MPI_Recv(..., MPI_ANY SOURCE, MPI_ANY TAG, ..., &status)
recvd tag = status.MPI_TAG;
recvd from = status.MPI_SOURCE;
MPI_Get count(&status, datatype, &recvd count);
e InFortran:
integer recvd_tag, recvd from, recvd_count
integer status (MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY SOURCE, MPI_ANY TAG, .. status, ierr)
tag_recvd = status (MPI_TAG)
recvd from = status (MPI_SOURCE)

call MPI_GET COUNT(status, datatype, recvd count, ierr)

CSC 591C k)

11

Simple Fortran Example

program main
use MPI

integer rank, size, to, from, tagl0
integer count, i, ierr

integer src, dest

integer st_source, st_tag, st_count
integer status (MPI_STATUS_SIZE)
double precision data(10)

call MPI_INIT(ierr)

call MPI_COMM RANK(MPI_COMM_WORLD,

+ rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORILD,

+ size, ierr)

print *, 'Process ', rank, ' of ',
size, ' is alive'

dest = size - 1

src =0

CSC 591C

if (rank .eq. 0) then
10

do 10, i=:
data(i) = i

continue

call MPI_SEND(data, 10, MPI_DOUBLE_PRECISION,
+ dest, 2001, MPI_COMM WORLD, ierr)
else if (rank [leq. dest) then

tag = MPI 2 AG

source = MP! SOURCE

call MPI_RECV(data, 10, MPI_DOUBLE_PRECISION,
source, tag, MPI_COMM_WORLD,
+ status, ierr)
call MPI_GET_COUNT(status, MPI_DOUBLE PRECISION,
st_count, ierr)

st_source = status(MPI_SOURCE)

st_tag = status(MPI_TAG)

print *, 'status info: source = ', st_source,
+ ' tag = ', st tag, 'count = ', st_count
endif

call MPI_FINALIZE(ierr)
end

Why Datatypes?

o Since all datais labeled by type, an MPI implementation can
support communication between processes on machines with very
different memory representations and lengths of elementary
datatypes (heterogeneous communication)

o Specifying application-oriented layout of data in memory
— reduces memory-to-memory copies in the implementation
— allows the use of special hardware (scatter/gather) when

available

CSC 591C

Basic C Datatypes in MPI

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_ CHAR

unsigned char

MPI_UNSIGNED_ SHORT

unsigned short int

MPI_UNSIGNED_ INT

unsigned int

MPI_UNSIGNED_ LONG

unsigned long int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED

CSC 591C

12

Tags and Contexts

o Separation of msgs used to be accomplished by use of tags, but
— requires libraries to be aware of tags used by other libraries
— can be defeated by use of "wild card” tags

o Contexts are different from tags
— no wild cards allowed
— allocated dynamically by the system when a library sets up a

communicator for its own use
o User-defined tags still provided in MPI for user convenience in
organizing application

e Use MPI_Comm_split fo create hew communicators

CSC 591C k4

MPI is Simple

® Many parallel programs can be written using just these six
functions, only two of which are non-trivial:

— MPI_INIT

— MPI_FINALIZE

— MPI_COMM_SIZE

— MPI_COMM RANK

— MPI_SEND

— MPI_RECV

o Point-to-point (send/recv) isn't the only way...

CSC 591C E

Introduction to Collective Operations in MPI

e Collective ops are called by all processes in a communicator.
— No tags
— Blocking
e MPI_BCAST disfributes data from one process (the root) fo all
others in a communicator.

e MPI_REDUCE/ALLREDUCE combines data from all processes in
communicator and returns it fo one process.

In many numerical algorithms, SEND/RECEIVE can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.
Others:

— MPI_[ALL]SCATTER[V]/ [ALL]GATHER[V]

CSC 591C k]

13

Collectives at Work

Before

e BCAST: é/ —
e Scatter/Gather:

, N

Coumy, Famy, oy,

- MPLALLGATHER,

Amcot, N\
NN NN

awcon \

SN o

| " aweve aweon awevs mwcwr xwewe

MPLALLTO_ALL_
Kecot

| Kuwwo Fanst Grwey
wrory.

CSC 591C 0 i 2 3 4 RANK 0 1 2 3 4
Collectives at Work (2)
o Reduce: o Predefined Ops (assocociative &
RANK commutative) / user ops (assoc.)
AeED MPI Name Function
0 - MPI_MAX Maximum
MPI_MIN Minimum
1 MPI_SUM Sum
MPI_REDUCE MPI_PROD Product
2 MPI_LAND Logical AND
MPI_BAND Bitwise AND
3 MPI_LOR Logical OR
MPI_BOR Bitwise OR
" MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR
/ MPI_MAXLOC | Maximum & location
MPI_MINLOC Minimum & location
CSC 591C

Collectives at Work (3)

RANK
o Allreduce:
0
|
EFGH
1 1
G-
i
o
2 !
—
s
unoP
3 !
4
h
i
amst
4 1
a
hy
\
AoEoloMoQ
CSC 591C 2

14

Example: Plin C

#include "mpi.h" h =1.0/ (double) n;
sum = 0.0;

#include <math.h> for (immyidtl; i<

it=numprocs) {

int main(int arge, char *argv[]) x =h * ((double)i - 0.5);
sum 4+= 4.0 / (1.0 + x*x);
{ }
int done = 0, n, myid, numprocs, i, rc; mypi = h * sum;

double PI25DT =
3.141592653589793238462643;
double mypi, pi, h, sum, x, a; MPI_DOUBLE, MPI_SUM, 0
MPI_Init(sargc,sargv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;
while ('done) {

if (myid == 0) { %.16£, Error is %.16f\n",

printf ("Enter the number of pi, fabs(pi - PI25DT));

MPI_Reduce (&mypi, &pi, 1,

MPI_COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately

intervals: (0 quits) "); r)uar Finalize();
scanf("¥d", &n) ; -
} return 0;
MPI_Bcast(sn, 1, MPI_INT, O,

MPI_COMM_WORLD) ;
if (n == 0) break;

CSC 591C s

Approximation of Pi

Integration to evaluate =

Campter appresdmations to 7 by
Know

g ntmerial integration

ton{s5%)
ancas -t)
. S
ma s
Sothat; >
Axtan
Fiom the integral tables we car find.

tang =1; a0 P 0| mmeaned

oy _p L

ton1 = [} s
Using the mid-poict rule with paneks of 0 00
ueiforra length h = 1/, for varions valucs of n.
Evaluate the furetior. at the midpoints of
ench subirtersal {z; 1, % §» b — b2 i the midpoint
Formula for the integral .

(h<ti— 12)

x=hax
where

CSC 591C “

Reduction

<Al

sum « 0 AL0]+ A1)
A1 Al A+ AP <A
Fapap AR
*~—Ap]

fori«< 1topdo
sum « sum + A[i]

ANy

Az A1+ AB]

A
AB]

CSC 591C i

Example: Pl in Fortran

Progran main

use MPT
double precision PI25DT

125DT = 3.141
double precision mypi, pi, h, sum, X, £, a
integer n, myid, numprocs, i, ierr
function to integrate

3d0)

£(a) = 4.d0 / (1.d0 + a*a)
call MPI INIT(ierr)
call MPI_COMM RANK(MPI_COMM WORLD, myid, ierr)
call MPI_COMM_SIZE(MPI_COMM WORLD, numprocs, ierr)
10 if (myid .eq. 0 en”

write (6,98)

98 format ('Enter the number of intervals: (0 quits)')
read(5,99) n
99 format (110)

endif

call MPI_BCAST(n, 1, MPI_INTEGER, 0,

+ - MPI_COMM_WORLD, ierr) .
Gheck for quit signal

if (n .le. 0) goto 30 A < the answer &4 o

calculate the interval size fouli i PP
h =1.0d0/n
sum = 0.0d0

97 format(' pi is approximately:
s i F18.16
do 20 i = myid+l, n, numprocs : \ ies o
x b F@iad ootsasy F onate Error is: ', F18.16)
B sum + £ (x)
20 continue

to 10
Ho 30 call MPI_FINALIZE (ierr)
mypi = h * sum povry !
collect all the partial sums
call MPI_REDUCE(mypi, pi, 1, MPI DOUBLE PRECISION,
+ MPT.

_SUM, 0, MPI_COMM_WORID, ierr)

CSC 591C

node 0 prints

() then
write(6, 97) pi, abs(pi - PI25DT

Alternative 6 Functions for Simplified MPI

— MPI_INIT

— MPI_FINALIZE
— MPI_COMM_SIZE
— MPI_COMM_RANK
— MPI_BCAST

— MPI_REDUCE

o What else is needed (and why)?

CSC 591C

Sources of Deadlocks

e Send a large message from process O to process 1
— If there is insufficient storage at the destination,
send must wait for user to provide memory space (via a receive)
o What happens with

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

+ This is called “unsafe” because it depends on the
availability of system buffers

CSC 591C

16

Some Solutions to the “unsafe” Problem

e Order operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)
e Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend(0)
Irecv(1l) Irecv(0)
Waitall Waitall

® How about races?

— Mulftiple recv processes w/ wildcard MPI_ANY_SOURCE

CSC 591C

Optimization by Non-blocking Communication

o Non-blocking operations work, but:

Process 0 Process 1
Isend (1) Isend(0)
Irecv(l) Irecv(0)
Waitall Waitall

e May want fo reverse send/receive order: (Why?)
Process 0 Process 1
Irecv(1l) Irecv(0)
Isend (1) Isend(0)
Waitall Waitall

CSC 591C

Communication and Blocking Modes

e Communication modes:

— Std: init send w/o recv
— Ready: send iff recv ready

— Sync: see Std but send only

completes if recv OK

— Buf: see Std but reserves
place to put data

— MPI_Buffer_attach/detach

o Nonblocking completed?
— MPI_Wait/Test

— MPI_Waitall/any/some

e Send+Recv w/ same/diff buffer

Send Blocking Nonblocking
Standard MPI_Send MPI_Isend

Ready MPI_Rsend | MPI_Irsend
Synchronous | MPI_Ssend | MPI_Issend
Buffered MPI_Bsend | MPI_Ibsend
Receive Blocking Nonblocking
Standard MPI_Recv MPI_Irecv

— MPI_Sendrecv

— MPI_Sendrecv_replace
CSC 591C

17

Communicators

e Alternative to avoid deadlocks:
— Use different communicators
— Offten used for different libraries

e Group: MPI_Comm_group, MPI_Comm_incl
o Context: for a group: MPI_Comm_create
e How about multicast?

CSC 591C 52

Toward a Portable MPI Environment

e MPICH: high-performance portable implementation of MPI (1+2)
e runs on MPP's, clusters, and heterogeneous networks of
workstations

o Inawide variety of environments, one can do:

configure

make

mpicc -mpitrace myprog.c

mpirun -np 10 myprog

or: mpiexec -n 10 myprog

to build, compile, run, and analyze performance

o Others: LAM MPI, OpenMPI, vendor X MPL

CSC 591C 5

Extending the Message-Passing Interface

o Dynamic Process Management
— Dynamic process startup
— Dynamic establishment of connections
o One-sided communication
— Put/get
— Other operations
e Parallel I/0
e Other MPI-2 features
— Generalized requests
— Bindings for C++/ Fortran-90; inferlanguage issues

CSC 591C 5

18

Profiling Support: PMPI

o Profiling layer of MPT
o Implemented via additional API in MPI library

— Different name: PMPI_Init() MPI_Init(.) {

— Same functionality as MPI_Init() collect pre stats;
o Allows user to: PMPI_Init(.);

— define own MPI_Init() collect post stats;

— Need to call PMPI_Init(): }

o User may choose subset of MPI routines to be profiled

o Useful for building performance analysis tools
— Vampir: Timeline of MPI traffic (Etnus, Inc.)
— Paradyn: Performance analysis (U. Wisconsin)
— mpiP: J. Vetter (LLNL)
— ScalaTrace: F. Mueller et al. (NCSU)
CSC 591C 55

When to use MPI

o Portability and Performance
o Irregular Data Structures

o Building Tools for Others
— Libraries

o Need fo Manage memory on a per-processor basis

CSC 591C 5

When not (necessarily) to use MPI

o Regular computation matches HPF

— But see PETSc/HPF comparison (LCASE 97-72)
e Solution (e.g., library) already exists

— http://www.mes.anl.gov/mpi/libraries.html

o Require Fault Tolerance
— Sockets
— will see other options (research)
e Distributed Computing
— CORBA, DCOM, etc.
e Embarrassingly parallel data division
— Google map-reduce

CSC 591C 5

19

Is MPI Simple?

o We said: Many parallel programs can be written using just these
six functions, only two of which are non-trivial:
— MPI_INIT —MPI_COMM_SIZE —MPI_SEND
— MPI_FINALIZE —MPI_COMM RANK —MPI_RECV

o Empirical study for large-scale benchmarks shows (IPDPS'02):
Routines sPPM SMG2000 SPHOT Sweep3D Samrai

MPI_Allreduce X X X X
MPI_Barrier X
MPI_Bcast X
MPI_lrecv X
MPI_lsend
MPI_Recv X
MPI_Reduce
MPI_Send
MPI_Test
MPI_Wait X
MPI_Waitall

CSC 591C

X x

X x
X x

X x

X x
X x

Summary

o parallel computing community has cooperated on development of
> standard for message-passing libraries

e many implementations, on nearly all platforms
o MPI subsets are easy to learn and use
o Lots of MPI material available

e Trends to adaptive computation (adaptive mesh refinement)
— Add'| MPT routines may be needed (even MPI-2 sometimes)

CSC 591C

Before MPI-2

1995 user poll showed:
o Diverse collection of users
o All MPI functions in use, including “obscure” ones.
o Extensions requested:
—parallel I/0
— process management
— connecting to running processes
—put/get, active messages
— interrupt-driven receive
— hon-blocking collective
— C++ bindings
— Threads, odds and ends

CSC 591C

20

MPI-2 Origins

e Began meeting in March 1995, with
—veterans of MPI-1
— hew vendor participants (especially Cray and SGI, and Japanese
manufacturers)
e Goals:
— Extend computational model beyond message-passing
— Add new capabilities
—Respond to user reaction to MPI-1
o MPI-11 released in June 1995 with MPI-1 repairs, some bindings
changes
e MPI-1.2 and MPI-2 released July 1997

o Implemented in most (all?) MPI libraries today

CSC 591C ot

Contents of MPI-2

o Extensions to the message-passing model
—Parallel I/0
— One-sided operations
— Dynamic process management

e Making MPT more robust and convenient
— C++ and Fortran 90 bindings
— Extended collective operations
— Language interoperability
— MPT interaction with threads
—External interfaces

CSC 591C &

MPI-2 Status Assessment

o All MPP vendors now have MPI-1. Free implementations (MPICH,
LAM) support heterogeneous workstation networks.

e MPI-2 implementations are in for most (all?) Vendors.

e MPI-2 implementations appearing piecemeal, with I/0 first.
—1I/0 available in most MPI implementations
— One-sided available in most (may still depend on
interconnect, e.g., Infiniband has it, Ethernet may have it.)
—parts of dynamic and one-sided in LAM/OpenMPI/MPICH

CSC 591C]

21

Dynamic Process Management in MPI-2

o Allows an MPI job fo spawn new processes at run time and
communicate with them

o Allows two independently started MPI applications to establish
communication

CSC 591C o

Starting New MPI Processes

® MPI_Comm_spawn
— Starts n new processes
— Collective over communicator
-Necessary for scalability
— Returns an intercommunicator
-Does not change MPI_COMM_WORLD

CSC 591C 3

Connecting Independently Started
Programs

® MPI_Open_port, MPI_Comm_connect, MPI_Comm_accept allow two
running MPT programs to connect and communicate
— Not intended for client/server applications
— Designed to support HPC applications
e MPI_Join allows the use of a TCP socket fo connect two applications
e Important for multi-scale simulations
— Connect multiple independent simulations, combine calculations

CSC 591C &

22

One-Sided Operations: Issues

Balancing efficiency and portability across a wide class of
architectures

— shared-memory multiprocessors

—NUMA architectures

—distributed-memory MPP's, clusters

— Workstation networks

Retaining “look and feel” of MPI-1

Dealing with subtle memory behavior issues: cache coherence,
sequential consistency

Synchronization is separate from data movement

CSC 591C

Remote Memory Access Windows and
Window Obijects

Process 0 Process 1

window

Process 2 Process 3

O
cm: = address spaces 5 g - window object

One-Sided Communication Calls

e MPI_Put - storesinto remote memory
® MPI_Get - reads from remote memory
e MPI_Accumulate - combined local/remote memory
— like reduction, need to specify "op”, e.g., MPT_SUM

All are non-blocking: data transfer is described, maybe even
initiated, but may continue after call returns

Subsequent synchronization on window object is needed fo
ensure operations are complete, e.g., MPI_Win_fence

CSC 591C

23

