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New findings in cop ying garba ge collection
� established a trade-off between copying cost

and pointer-tracking cost

� the trade-off can be exploited effectively

� generational collectors: very low pointer-tracking cost

� older-first collector: very low copying cost

� total GC cost lower for older-first collector

� pause times also lower for older-first collector
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Region-based cop ying garba ge collection

Compute reachability of heap objects in a chosen region:
global

remembered set for collected region

root
global

root

region not collected region collected

... then copy reachable objects over into a fresh to-space.
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Actions in region-based cop ying garba ge collection
� identifying global roots (stack scanning)

� identifying pointers across region boundaries

– write barriers at pointer stores
– recording pointers in remembered sets
– processing remembered sets at GC time

� Cheney heap scanning — interleaves:

– copying object bytes
– identifying pointers in copied objects
– transitively computing reachability
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Age-based garba ge collection

Choose regions according to age:

allocation
freed for new

oldest youngest

youngest
age-ordered heap

contiguous collected region

survivors

oldest

Generational collectors choose a youngest region.

Older-first collector chooses a middle-aged region,

processing the heap from oldest to youngest end.
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When should older -fir st polic y work well?

When the collected region stays in the middle:
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Experimental setup
� first implementation of older-first collector

� JikesRVM virtual machine for Java bytecode [IBM]

� highly optimizing compiler

� GC Toolkit for JikesRVM [UMass]

� SPEC benchmarks for Java (SPECjvm98, SPEC JBB)
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Implementation details
� all collectors share the same GC Toolkit

infrastructure, except for write barriers

� original design of older-first collector called for large

address space to use fast write barrier

� JikesRVM runs on 32-bit PowerPC

� emulate effect of large address space by indirection

through age table (slower)
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Write barrier s (Java pseudocode)

Direct write barrier:
if (source < ((target >>> 28) << 28))

{
...remember pointer...

}
Indirect write barrier:
s = (source >>> 26);
t = (target >>> 26);
if (s != t

&& t >= HeapBoundary
&& agetable [s] > agetable [t])

{
...remember pointer...

}
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Direct write barrier , used in generational collector

;; clear low-order 28 bits of pointer source:
rlwinm Rtemp, Rsource, 0x0, 0x0, 0x3
;; compare with pointer target:
cmp cr1, Rtarget, Rtemp
;; if comparison is favorable, skip remembering:
bge 1 label:do-not-remember-pointer
;; fall-through: remember pointer
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Indirect write barrier , used in older -fir st collector

;; calculate frame numbers for source and target:
rlwinm Rtemp1, Rsource, 0x6, 0x1a, 0x1f
extsb Rtemp1, Rtemp1
rlwinm Rtemp2, Rtarget, 0x6, 0x1a, 0x1f
extsb Rtemp2, Rtemp2
;; intraframe pointers test:
cmp cr1, Rtemp1, Rtemp2
beq 1 label:do-not-remember-pointer
;; heap boundary test:
cmpi cr1, Rtemp2, 0xf
blt 1 label:do-not-remember-pointer
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Indirect write barrier (cont’d)

;; load base of age table:
lwz Rtemp3, a-static-offset(JTOC)
;; look up age of source and target:
sli Rtemp1, Rtemp1, 0x2
lwzx Rtemp1, Rtemp3, Rtemp1
sli Rtemp2, Rtemp2, 0x2
lwzx Rtemp2, Rtemp3, Rtemp2
;; age comparison test:
cmp cr1, Rtemp1, Rtemp2
ble 1 label:do-not-remember-pointer
;; fall-through: remember pointer
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Results: mark/cons ratio
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Results: time spent in garba ge collection
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Results: total execution time
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Copying vs. pointer -trac king

Sample run — pseudojbb, heap size 1.25 times minimum
collector Appel-style Gen. Older-First 10%

bytes allocated 667 million
bytes copied 221 million 117 million
mark/cons ratio 0.33 0.17

write barriers 98.2 million
pointers remembered 2.59 million 6.24 million
pointers processed 2.59 million 10.32 million

GC time 9.38s 5.15s
total execution time 45.15s 42.04s
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What we haven’t done yet...
� write barrier (32-bit address space)

– improve code sequence — estimate further

2-3% reduction possible in total execution time

– need to inject code lower than compiler’s HIR

� write barrier (64-bit address space)

– porting JikesRVM to 64-bit PowerPC architecture
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What we haven’t done yet... (cont’d)
� properly investigate locality effects

– building tools: robust JikesRVM - SimpleScalar -

PowerPC simulator, must support dynamic code

generation, signals, system calls

� flexible policies for collection region

– Appel collector (flexible) better than fixed genera-

tional
– flexible older-first: need good policies
– Beltway collector provides mechanism [PLDI]
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Achievements
� shown trade-off between copying and pointer-tracking

� fulfilled promise of older-first GC

� always improve over fixed generational GC

� often improve over Appel-style generational GC

� low end-to-end times and pause times
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