
Older-First Garbage Collection in Practice:
Evaluation in a Java Virtual Machine

Darko Stefanovic (Univ. of New Mexico)

Matthew Hertz (Univ. of Massachusetts)

Stephen M. Blackburn (Australian National Univ.)

Kathryn S. McKinley (Univ. of Texas Austin)

J. Eliot B. Moss (Univ. of Massachusetts)

ACM SIGPLAN Workshop on Memory System Performance

Berlin, 16 June 2002



New findings in cop ying garba ge collection
� established a trade-off between copying cost

and pointer-tracking cost

� the trade-off can be exploited effectively

� generational collectors: very low pointer-tracking cost

� older-first collector: very low copying cost

� total GC cost lower for older-first collector

� pause times also lower for older-first collector

1



Region-based cop ying garba ge collection

Compute reachability of heap objects in a chosen region:
global

remembered set for collected region

root
global

root

region not collected region collected

... then copy reachable objects over into a fresh to-space.
2



Actions in region-based cop ying garba ge collection
� identifying global roots (stack scanning)

� identifying pointers across region boundaries

– write barriers at pointer stores
– recording pointers in remembered sets
– processing remembered sets at GC time

� Cheney heap scanning — interleaves:

– copying object bytes
– identifying pointers in copied objects
– transitively computing reachability

3



Age-based garba ge collection

Choose regions according to age:

allocation
freed for new

oldest youngest

youngest
age-ordered heap

contiguous collected region

survivors

oldest

Generational collectors choose a youngest region.

Older-first collector chooses a middle-aged region,

processing the heap from oldest to youngest end.

4



When should older -fir st polic y work well?

When the collected region stays in the middle:

C

C

C

C

C

C

C

C
S

S

S

S

S

S

S

S empty

��� � ���� �� 	

��� � ���� �� 


��� � ���� �� �

��� � ���� �� �

��� � ���� �� 

��� � ���� �� �

��� � ���� �� �

��� � ���� �� �

���� �� � ��� �� ��

5



Experimental setup
� first implementation of older-first collector

� JikesRVM virtual machine for Java bytecode [IBM]

� highly optimizing compiler

� GC Toolkit for JikesRVM [UMass]

� SPEC benchmarks for Java (SPECjvm98, SPEC JBB)

6



Implementation details
� all collectors share the same GC Toolkit

infrastructure, except for write barriers

� original design of older-first collector called for large

address space to use fast write barrier

� JikesRVM runs on 32-bit PowerPC

� emulate effect of large address space by indirection

through age table (slower)

7



Write barrier s (Java pseudocode)

Direct write barrier:
if (source < ((target >>> 28) << 28))

{
...remember pointer...

}
Indirect write barrier:
s = (source >>> 26);
t = (target >>> 26);
if (s != t

&& t >= HeapBoundary
&& agetable [s] > agetable [t])

{
...remember pointer...

}
8



Direct write barrier , used in generational collector

;; clear low-order 28 bits of pointer source:
rlwinm Rtemp, Rsource, 0x0, 0x0, 0x3
;; compare with pointer target:
cmp cr1, Rtarget, Rtemp
;; if comparison is favorable, skip remembering:
bge 1 label:do-not-remember-pointer
;; fall-through: remember pointer

9



Indirect write barrier , used in older -fir st collector

;; calculate frame numbers for source and target:
rlwinm Rtemp1, Rsource, 0x6, 0x1a, 0x1f
extsb Rtemp1, Rtemp1
rlwinm Rtemp2, Rtarget, 0x6, 0x1a, 0x1f
extsb Rtemp2, Rtemp2
;; intraframe pointers test:
cmp cr1, Rtemp1, Rtemp2
beq 1 label:do-not-remember-pointer
;; heap boundary test:
cmpi cr1, Rtemp2, 0xf
blt 1 label:do-not-remember-pointer

10



Indirect write barrier (cont’d)

;; load base of age table:
lwz Rtemp3, a-static-offset(JTOC)
;; look up age of source and target:
sli Rtemp1, Rtemp1, 0x2
lwzx Rtemp1, Rtemp3, Rtemp1
sli Rtemp2, Rtemp2, 0x2
lwzx Rtemp2, Rtemp3, Rtemp2
;; age comparison test:
cmp cr1, Rtemp1, Rtemp2
ble 1 label:do-not-remember-pointer
;; fall-through: remember pointer

11



Results: mark/cons ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.25 1.5 2 2.5 3

M
ar

k/
co

ns
 r

at
io

 r
el

at
iv

e 
to

 A
pp

el
�

Heap size relative to minimum heap size (log)

pseudojbb (Auto Best Config)

ss
gen

of

12



Results: time spent in garba ge collection

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.25 1.5 2 2.5 3

G
C

 ti
m

e 
re

la
tiv

e 
to

 A
pp

el
�

Heap size relative to minimum heap size (log)

pseudojbb (Auto Best Config)

ss
gen

of

13



Results: total execution time

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.25 1.5 2 2.5 3

T
ot

al
 ti

m
e 

re
la

tiv
e 

to
 A

pp
el

�

Heap size relative to minimum heap size (log)

pseudojbb (Auto Best Config)

ss
gen

of

14



Copying vs. pointer -trac king

Sample run — pseudojbb, heap size 1.25 times minimum
collector Appel-style Gen. Older-First 10%

bytes allocated 667 million
bytes copied 221 million 117 million
mark/cons ratio 0.33 0.17

write barriers 98.2 million
pointers remembered 2.59 million 6.24 million
pointers processed 2.59 million 10.32 million

GC time 9.38s 5.15s
total execution time 45.15s 42.04s

15



What we haven’t done yet...
� write barrier (32-bit address space)

– improve code sequence — estimate further

2-3% reduction possible in total execution time

– need to inject code lower than compiler’s HIR

� write barrier (64-bit address space)

– porting JikesRVM to 64-bit PowerPC architecture

16



What we haven’t done yet... (cont’d)
� properly investigate locality effects

– building tools: robust JikesRVM - SimpleScalar -

PowerPC simulator, must support dynamic code

generation, signals, system calls

� flexible policies for collection region

– Appel collector (flexible) better than fixed genera-

tional
– flexible older-first: need good policies
– Beltway collector provides mechanism [PLDI]

17



Achievements
� shown trade-off between copying and pointer-tracking

� fulfilled promise of older-first GC

� always improve over fixed generational GC

� often improve over Appel-style generational GC

� low end-to-end times and pause times

18


