
Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems

Motivation

�Shared hardware like caches & TLBs introduce timing

unpredictability for real-time systems (RTS).

�Worst-case execution time (WCET) analysis for RTS with shared

hardware resources is often so pessimistic that the extra processing

capacity of multicore systems is negated.

�Different levels of assurance are required for different criticality

tasks.

Problem

Cache Management – Solution & Results

1University of North Carolina Chapel Hill 2North Carolina State University

PIs: Dr. James Anderson1 & Dr. Frank Mueller2

Students: Bryan Ward1, Jonathan Herman1, Namhoon Kim1, Shrinivas Panchamukhi2

CPU
L1

cache
L2 cache

Main

memory

�a) Memory ref hits in L1 cache – Access latency: 1-4 cycles.

CPU
L1

cache
L2 cache Main

memory

MC2 (mixed-criticality on multicore) architecture

Mixed-Criticality System

TLB Coloring – Solutions & Results

Design

• Assign the same color to pages that map to the same

DTLB set.

• To support greater than page size allocations, R sets are

reserved. (Max contiguous allocation = PAGE_SIZE * R)

Data Structures and Implementation

CPU 0 CPU 1 CPU 2 CPU 3

CE CE CE CE

P-EDF P-EDF P-EDF P-EDF

G-EDF

Best Effort

A

B

C

D

• Assign colors to pages to control the mapping address of

memory pages.

• Higher-criticality tasks should not be affected by lower-

criticality tasks.

• Request tokens to reserve cache lines before loading pages.

Cache Management

Color 0

Way 0 Way 1 … Way 7
…

CPU 0

CPU 1

CPU 2cache memory

�b) Memory ref misses L1 & L2 cache – Access latency: 40-100

cycles.

�c) Memory ref misses in TLB – Access latency: +1000 cycles.

�Tighter WCET estimates can be established if we know which

references hit in the cache and which do not.

�Other shared resources like TLBs show similar timing

unpredictability.

Solution

� Our solutions focus on two shared resources: shared caches and

TLBs.

� TLB Coloring:

• Control the allocation of memory so that real-time tasks will not

interfere with one another in terms of DTLB conflicts.

• Make DTLB misses more predictable.

• Enable static timing analysis tools to compute tight bound on

WCET.

� Cache Management:

• Leverage the fact that only highly critical components require

conservative provisioning.

• Provide “temporal isolation” across criticality levels.

• Apply a multiprocessor real-time synchronization protocol to

manage cache lines.

• Enable schedulability gains by reducing WCET.

Conclusions

� Designed TLB coloring techniques to support contiguous page

allocations.

� eliminate DTLB misses.

� Evaluated on Intel 16 core platform.

� Conducted experiments using synthetic benchmark, Malardalen

benchmark, and MiBench.

� Provided task isolation in terms of DTLB conflicts.

� Re-implemented a mixed-criticality scheduler in LITMUSRT to

support cache management.

• tlb_malloc_init()

• Sets aside huge virtual address space

• tlb_malloc(size, color)

• Allocates memory region of size bytes of a particular color

• Serves allocations from the pool set aside by

tlb_malloc_init

• tlb_free(color)

• Deallocates memory

• Adds memory back to the pool

• malloc - non uniform utilization of DTLB sets

• tlb_malloc - predictable

Results

• Zero misses if tasks use tlb_malloc

Ongoing Work

• Implement MC2 scheduler in LITMUSRT.

• Enable budget enforcement using container abstraction

within the OS.

• Trap page fault when a job accesses a page for the first

time to request token.

• Determine whether cache bypass can be selectively

applied.

• Devise needed schedulability analysis.

Color M

CPU 2

CPU 3

• Partition caches to eliminate interference across processors

for Levels A and B.

• Global tasks at Level C require tokens to reserve cache lines.

