Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems

'University of North Carolina Chapel Hill

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Students: Bryan War

PIs: Dr. James Anderson' & Dr. Frank Mueller?

, Micaiah Chisholm!, Namhoon Kim!, Shrinivas Panchamukh

2North Carolina State University

Xing Pan?

Motivation

> Shared hardware like caches & memory introduce timing
unpredictability for real-time systems (RTS).

> Worst-case execution time (WCET) analysis for RTS with shared
hardware resources is often so pessimistic that the extra processing

capacity of multicore systems is negated.

> Different levels of assurance are required for different criticality
tasks.

Problem

-: LI 1 [2cache | | Mein
cache || | memory

»>a) Memory ref hits in L1 cache — Access latency: 1-4 cycles.
»>b) Memory ref misses L1 & L2 cache — Access latency: 40-100
cycles.

»c¢) Memory ref misses in TLB — Access latency: +1000 cycles.

> Shared memory shows timing unpredictability. (1) The latency of
accessing remote node is significantly longer than local node. (2)
conflicts between shared-bank accesses result in unpredictable
memory-access latencies.

> Sharing last-level caches (LLCs) results in timing behaviors that are
exceedingly difficult to characterize for WCETs without excessive
pessimism.

Solution

» Our solutions focus on two shared resources: shared caches and
memory.

» Controller-Aware Memory Coloring:

* Design a heap allocator that “colors” memory pages with
locality affinity for controller and bank-awareness.

* Avoid memory accesses to remote node.
* Reduce conflicts among banks.
» Cache and Bank Isolation:
* Provide criticality-aware isolation in LLC and DRAM bank.

* Provide an optimized LLC allocation technique based on linear
programming.

Isolate the higher-criticality tasks from the operating system
(0S).

* Enable schedulability gains by integrating MC analysis and
hardware management.

Controller-Aware Memory Coloring — Solutions
& Results

/ Design and Implementation \

Memory Controller 3

Memory Controller 0

Core4,5,6,7

Memory Controller 1

Socket 0 Socket 1

* char * A = (char*) mmap(color id, length, prot |
0x40000000, flag, fd, offset);

Cache and Bank Isolation — Solutions & Results

Cache and DRAM Bank Allocation \

16 Ways

t o
scoon |_ cruo Loty —
l [* Levela
1 S
4 Colors cPul Levpl B LevelC
l [* LevelA =
{ T I
4 Colors. cPU2 [z
l Level A
t PU3
4 Colors CPU3 vel B
l [“ LevelA

DRAM | DRAM | DRAM | DRAM | DRAM [DRAM [DRAM | DRAM
Bank0 [Bank 1 | Bank2 | Bank3 [Bank4 | Banks | Banks | Bank7
LevelC | LevelC | LeveiC [cPuo [cput | cpu2 | cpus | Levic
&o0s | &os | &os [A&B | AxB | A&B [A&B | &Os

LLC(L2)

* Criticality-aware optimization techniques based on linear

e Third parameter triggers our coloring allocator.
* First parameter indicates the memory coloring information.
/ Results \

18 | msemebans< o« dfferent banc mdfferent controller msingle run

~

N
[}

Execution time (sec.)
=
3
;

oNn b o ow
=t

F P & & g S R e B)
F&(& 6@” Eoé“\ cc:v‘ 'ﬂi\éy IO £
S &

= P &
R x& S}
o
4 2

X264, 4 cores ——
64, 8 cores ——
X264, 16 cores ——
Stream, 4 cores
35 Stream, 8 cores ——
Stream, 16 cores
single run ——

Execution time (s)

25 £ EL

A

Background Stream Errorbar (s)

)
=

0

diffe difr Sam

ere"Lccnh_c” e’e"’\bank S bany
er

Memory configuration

* System performance for Parsec code is enhanced by our
controller-aware memory coloring scheme since it can
avoid remote access penalty and reduce shared bank
conflict.

+ Tasks at Level C and OS shares the same partition.

K Results

o cache
o ot

programming are used for allocating LLC.

Mattx progrem, WCET ; Color = 15

so00 g o . o

et

2 X B & o e 1 il
umber of Ways

‘‘‘‘‘‘ MCMSO e MCWFULLISO = MC' — PEDFISO «- PEDF - EOF

E] 0 s g
Original System Utilization

* We devised optimized LLC allocation techniques.

* Isolation reduced WCETs by up to 242%.

* MC provisioning improved schedulability for 68% of the
scenarios.

* LLC and bank isolation improved schedulability for all
scenarios under partitioned earliest-deadline-first (PEDF).

* Combining both approaches enables us to schedule one to
two cores’ worth of additional utilization in most cases.

* The “different_controller” of our approach is a policy that

\ provides single core equivalence.

* Inrun-time experiments, there were no deadline misses at
levels A and B. At level C, the largest deadline-miss ratio
was 1.40%, which is acceptable as level-C is soft real-time.

Conclusions

» Designed controller-aware memory coloring techniques to support
memory page allocations.

> Designed criticality-aware LLC optimization techniques.

» Provided OS and task isolation in terms of LLC and DRAM banks.
» Avoid remote memory node access.
>

Evaluated on Intel and AMD 16 core platforms and I.MX6 quad-
core platform.

» Conducted experiments using synthetic benchmark, Parsec and
Data intensive systems (DIS) benchmark.

Y

Conducted a large-scale overhead-aware schedulability study.

Y

Conducted run-time experiments to validate our assumptions.

