
Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems

Motivation

�Shared hardware like caches & memory introduce timing

unpredictability for real-time systems (RTS).

�Worst-case execution time (WCET) analysis for RTS with shared

hardware resources is often so pessimistic that the extra processing

capacity of multicore systems is negated.

�Different levels of assurance are required for different criticality

tasks.

Problem

Cache and Bank Isolation – Solutions & Results

1University of North Carolina Chapel Hill 2North Carolina State University

PIs: Dr. James Anderson1 & Dr. Frank Mueller2

Students: Bryan Ward1, Micaiah Chisholm1, Namhoon Kim1, Shrinivas Panchamukhi2, Xing Pan2

�a) Memory ref hits in L1 cache – Access latency: 1-4 cycles.

�b) Memory ref misses L1 & L2 cache – Access latency: 40-100

cycles.

�c) Memory ref misses in TLB – Access latency: +1000 cycles.

CPU
L1

cache
L2 cache Main

memory

Controller-Aware Memory Coloring – Solutions

& Results

Design and Implementation

Results

Results

Cache and DRAM Bank Allocation

• Criticality-aware optimization techniques based on linear

programming are used for allocating LLC.

• Tasks at Level C and OS shares the same partition.
• char * A = (char*) mmap(color id, length, prot |

0x40000000, flag, fd, offset);

• Third parameter triggers our coloring allocator.

• First parameter indicates the memory coloring information.

DRAM

Bank 0

Level C

& OS

DRAM

Bank 1

Level C

& OS

DRAM

Bank 2

Level C

& OS

DRAM

Bank 3

CPU 0

A & B

DRAM

Bank 4

CPU 1

A & B

DRAM

Bank 5

CPU 2

A & B

DRAM

Bank 6

CPU 3

A & B

DRAM

Bank 7

Level C

& OS

CPU 0

Level A

CPU 1

Level A

CPU 2

Level A

CPU 3

Level A

CPU 0

Level B

CPU 1

Level B

CPU 2

Level B

CPU 3

Level B

Level C

&

OS

4 Colors

4 Colors

4 Colors

4 Colors

16 Ways

LLC (L2)

Memory Memory

�Shared memory shows timing unpredictability. (1) The latency of

accessing remote node is significantly longer than local node. (2)

conflicts between shared-bank accesses result in unpredictable

memory-access latencies.

�Sharing last-level caches (LLCs) results in timing behaviors that are

exceedingly difficult to characterize for WCETs without excessive

pessimism.

Solution

� Our solutions focus on two shared resources: shared caches and

memory.

� Controller-Aware Memory Coloring:

• Design a heap allocator that “colors” memory pages with

locality affinity for controller and bank-awareness.

• Avoid memory accesses to remote node.

• Reduce conflicts among banks.

� Cache and Bank Isolation:

• Provide criticality-aware isolation in LLC and DRAM bank.

• Provide an optimized LLC allocation technique based on linear

programming.

• Isolate the higher-criticality tasks from the operating system

(OS).

• Enable schedulability gains by integrating MC analysis and

hardware management.

Conclusions

� Designed controller-aware memory coloring techniques to support

memory page allocations.

� Designed criticality-aware LLC optimization techniques.

� Provided OS and task isolation in terms of LLC and DRAM banks.

� Avoid remote memory node access.

� Evaluated on Intel and AMD 16 core platforms and I.MX6 quad-

core platform.

� Conducted experiments using synthetic benchmark, Parsec and

Data intensive systems (DIS) benchmark.

� Conducted a large-scale overhead-aware schedulability study.

� Conducted run-time experiments to validate our assumptions.

• System performance for Parsec code is enhanced by our

controller-aware memory coloring scheme since it can

avoid remote access penalty and reduce shared bank

conflict.

• The “different_controller” of our approach is a policy that

provides single core equivalence.

• We devised optimized LLC allocation techniques.

• Isolation reduced WCETs by up to 242%.

• MC provisioning improved schedulability for 68% of the

scenarios.

• LLC and bank isolation improved schedulability for all

scenarios under partitioned earliest-deadline-first (PEDF).

• Combining both approaches enables us to schedule one to

two cores’ worth of additional utilization in most cases.

• In run-time experiments, there were no deadline misses at

levels A and B. At level C, the largest deadline-miss ratio

was 1.40%, which is acceptable as level-C is soft real-time.

Node 1Node 0

CPU 0 CPU 1 CPU 2 CPU 3

Shared LLC (L3) cache

CPU 4 CPU 5 CPU 6 CPU 7

