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Motivation

�Shared hardware like caches & memory introduce timing 

unpredictability for real-time systems (RTS). 

�Worst-case execution time (WCET) analysis for RTS with shared 

hardware resources is often so pessimistic that the extra processing 

capacity of multicore systems is negated. 

�Different levels of assurance are required for different criticality 

tasks.

Problem

Cache and Bank Isolation – Solutions & Results
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�a) Memory ref hits in L1 cache – Access latency: 1-4 cycles.

�b) Memory ref misses  L1 & L2 cache – Access latency: 40-100 

cycles.

�c) Memory ref misses in TLB – Access latency: +1000 cycles.
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Cache and DRAM Bank Allocation

• Criticality-aware optimization techniques based on linear 

programming are used for allocating LLC.

• Tasks at Level C and OS shares the same partition.
• char * A = (char*) mmap(color id, length, prot | 

0x40000000, flag, fd, offset);

• Third parameter triggers our coloring allocator. 

• First parameter indicates the memory coloring information.
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Memory Memory

�Shared memory shows timing unpredictability. (1) The latency of 

accessing remote node is significantly longer than local node. (2) 

conflicts between shared-bank accesses result in unpredictable 

memory-access latencies.

�Sharing last-level caches (LLCs) results in timing behaviors that are 

exceedingly difficult to characterize for WCETs without excessive 

pessimism.

Solution

� Our solutions focus on two shared resources: shared caches and

memory.

� Controller-Aware Memory Coloring:

• Design a heap allocator that “colors” memory pages with

locality affinity for controller and bank-awareness.

• Avoid memory accesses to remote node.

• Reduce conflicts among banks.

� Cache and Bank Isolation:

• Provide criticality-aware isolation in LLC and DRAM bank.

• Provide an optimized LLC allocation technique based on linear

programming.

• Isolate the higher-criticality tasks from the operating system

(OS).

• Enable schedulability gains by integrating MC analysis and

hardware management.

Conclusions

� Designed controller-aware memory coloring techniques to support 

memory page allocations.

� Designed criticality-aware LLC optimization techniques.

� Provided OS and task isolation in terms of LLC and DRAM banks.

� Avoid remote memory node access.

� Evaluated on Intel and AMD 16 core platforms and I.MX6 quad-

core platform.

� Conducted experiments using synthetic benchmark, Parsec and 

Data intensive systems (DIS) benchmark.

� Conducted a large-scale overhead-aware schedulability study.

� Conducted run-time experiments to validate our assumptions.

• System performance for Parsec code is enhanced by our 

controller-aware memory coloring scheme since it can 

avoid remote access penalty and reduce shared bank 

conflict.

• The “different_controller” of our approach is a policy that 

provides single core equivalence.

• We devised optimized LLC allocation techniques.

• Isolation reduced WCETs by up to 242%.

• MC provisioning improved schedulability for 68% of the 

scenarios.

• LLC and bank isolation improved schedulability for all 

scenarios under partitioned earliest-deadline-first (PEDF).

• Combining both approaches enables us to schedule one to 

two cores’ worth of additional utilization in most cases.

• In run-time experiments, there were no deadline misses at 

levels A and B. At level C, the largest deadline-miss ratio 

was 1.40%, which is acceptable as level-C is soft real-time.
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