Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

'University of North Carolina Chapel Hill

PIs: Dr. James Anderson' & Dr. Frank Mueller?

2North Carolina State University

NC State [

Students: Nathan Otternes!, Micaiah Chisholm!, Namhoon Kim!, Xing Pan?

Motivation

» Shared hardware like caches & memory introduce timing
unpredictability for real-time systems (RTS).

» Worst-case execution time (WCET) analysis for RTS with shared
hardware resources is often so pessimistic that the extra processing
capacity of multicore systems is negated.

> Different levels of assurance are required for different criticality
tasks.

Problem

WCET : Way = 8
1600

Loaded, Unmanaged HW without sharing
Loaded,

managed HW with sharing -0
14008 @ m g

Mg, Loaded managed HW wioutsharing

1200 & . 1

1000 [

Data sharing breaks the
isolation properties.

Execution Timeims)

Number of Colors

> Recent work has shown that, by combining hardware management
and criticality-aware task provisioning, capacity loss can be
significantly reduced when supporting real-time workloads on
multicore platforms.

> Supporting real-world workloads has not been realized due to a
lack of support for sharing among tasks.

> Shared memory shows timing unpredictability. (1) The latency of
accessing remote node is significantly longer than local node. (2)
conflicts between shared-bank accesses result in unpredictable
memory-access latencies.

Solution

» We considered two type of sharing among tasks: shared buffers and
shared libraries.
» Controller-Aware Memory Coloring:

* Colors the entire memory space of heap, static, stack, and
instruction segments with locality affinity for controller and bank-
awareness.

* Avoid memory accesses to remote node.

* Reduce conflicts among banks.

> Supporting Data Sharing in Mixed-Criticality, Multicore
Systems:

* Implemented two inter-process communication (IPC) mechanisms.

= Producer/consumer buffers (PCBs) and wait-free buffers
(WFBs)

* Proposed three techniques to mitigate interference due to shared
memory.
= Selective LLC ByPass (SBP): Di

and allocate it from the Level-C banks.
= Concurrency Elimination (CE): If a buffer is shared by two
tasks at Levels A and/or B, assign both tasks to the same core
and allocate the buffer from that core’s bank.
= LLC Locking (CL): Permanently lock a buffer in the LLC.
> Allowing Shared Libraries while Supporting Hardware
Isolation:
« Introduced per-partition library replicas.
* Implemented a system call to replicate shared libraries.

heahl

a buffer as le

Supporting Data Sharing in Mixed-Criticality —
Solutions & Results

LLC Allocation for locked buffers

16 Ways

0
Level B ——
4Colors cruo
e (I,
T
Ledin —
4 Colors CcPUL b
— Leveln LevelC
| G e)
0z os
teets —f " T[]
4Colors cruz
I = b,
i 703 b,
cvel B —s]
4Colors crus
[[=="

Ways locked for buffers

* PCBs are used for tasks of the same criticality.

* WFBs are used for tasks of different criticalities.

* SBP eliminates unpredictable LLC interference at Levels A
and B.

* CE eliminates concurrent interference.

* CL eliminates any DRAM-bank contention but reduces the
LLC size for caching code and local data.

Controller-Aware Memory Coloring — Solutions
& Results

/ Design and Implementation \
- ™

oRam
if I :
Ciemory Controller >

s

| Memory Controlier 3>

mza»nBor-r
mzo»nBorr

-

Memory Controller 2>
DRAM
N

CWemory Contraler >

Socket 0 Socket 1

* Partition the entire memory space into multiple “colors”
based on memory architecture.

Assign multiple private memory colors to each real-time
task based on coloring configuration automatically.
Configure memory coloring policy for entire memory space

* Analyze the overhead of Controller-Aware Memory

 Partitioning heuristics are proposed to support CE.
* A modified criticality-aware optimization technique based
on linear programming are used for applying CL.

/ Results

v

0.8 ‘,
-+ U-EDF
2o e DSO
5% — sBP
2 ! w—a SBP+CE
g™ -~ SBP+CE+CL
. e-e |deal
0.2
0. ’
0 1 2 3 4 9

Original System Utilization

We conducted micro-benchmarks and a large-scale
overhead-aware schedulability study.

CL writing times were 2 to 7% of SBP writing times.

CE writing times were 50 to 60% of SBP writing times.

SBP provided schedulability benefits in 60% of scenarios. In
30% of cases, SBP provided schedulability near to Ideal.

Coloring for real-time task’s WCET.
* Require no change for applications.

(heap, static, stack, and instruction segments).

/ Results
18 e T 2
6
5 14
5 12—
E 10—
=
£ s 4|
s
E)
& oz
0
R S PR B T S I
& & F T
o & & & ¢ & L ©
oﬂﬁs G v
IS S e o

* System performance for Parsec code is enhanced by our
Controller-Aware Memory Coloring scheme since it can
avoid remote access penalty and reduce shared bank
conflict.

* CEand CL provided mild improvement to schedulability in
kZO% of considered scenarios. J

Allowing Shared Libraries while Supporting
Isolation — Solutions & Results

Design and Implementation

* Per-partition replicas can allow shared libraries to be used
while preserving isolation properties.

* The first time a shared library is used by a task, a set of
replicas is created by allocating new pages from the
appropriate DRAM bank.

* Library content is copied into them.

* The page table entries are modified to reference the replica
pages instead of the original ones.

* The “different_controller” of our approach is a policy that
\ provides single core equivalence. /

Conclusions

» Designed Controller-Aware Memory Coloring techniques to
support memory coloring allocations for entire memory space.

» Avoid remote memory node access, and reduce bank-level
contention.

> Evaluated on Intel and AMD 16 core platforms and .MX6 quad-
core platform.

> Impl d two IPC mect

based on shared memory.

> Designed three techniques to reduce interference due to sharing
data among tasks.

» Proposed partitioning heuristics and a criticality-aware
optimization technique for allocating shared buffers.

> Proposed per-partition replicas of shared libraries to allow sharing
libraries.

> Conducted micro-benchmarks and large-scale overhead-aware
schedulability studies.

