
Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems

Motivation

� Shared hardware like caches & memory introduce timing

unpredictability for real-time systems (RTS).

� Worst-case execution time (WCET) analysis for RTS with shared

hardware resources is often so pessimistic that the extra processing

capacity of multicore systems is negated.

� Different levels of assurance are required for different criticality

tasks.

Problem

Supporting Data Sharing in Mixed-Criticality –

Solutions & Results

1University of North Carolina Chapel Hill 2North Carolina State University

PIs: Dr. James Anderson1 & Dr. Frank Mueller2

Students: Nathan Otternes1, Micaiah Chisholm1, Namhoon Kim1, Xing Pan2

� Recent work has shown that, by combining hardware management

and criticality-aware task provisioning, capacity loss can be

significantly reduced when supporting real-time workloads on

multicore platforms.

� Supporting real-world workloads has not been realized due to a

lack of support for sharing among tasks.

Controller-Aware Memory Coloring – Solutions 

& Results

Design and Implementation

Results

Results

LLC Allocation for locked buffers

• PCBs are used for tasks of the same criticality.

• WFBs are used for tasks of different criticalities.

• SBP eliminates unpredictable LLC interference at Levels A 

and B.

• CE eliminates concurrent interference.

• CL eliminates any DRAM-bank contention but reduces the 

LLC size for caching code and local data.

• Partitioning heuristics are proposed to support CE.

• A modified criticality-aware optimization technique based 

on linear programming are used for applying CL.

• Partition the entire memory space into multiple “colors” 

based on memory architecture.

• Assign multiple private memory colors to each real-time 

task based on coloring configuration automatically.

• Configure memory coloring policy for entire memory space 

(heap, static, stack, and instruction segments ).

• Analyze the overhead of Controller-Aware Memory 

Coloring for real-time task’s WCET.

• Require no change for applications.

Memory Memory

Data sharing breaks the 

isolation properties.

bx

by

by

bz

CPU 0

Level A

CPU 1

Level A

CPU 2

Level A

CPU 3

Level A

CPU 0

Level B

CPU 1

Level B

CPU 2

Level B

CPU 3

Level B

Level C

&

OS

4 Colors

4 Colors

4 Colors

4 Colors

16 Ways

LLC (L2)

Ways locked for buffers

�Shared memory shows timing unpredictability. (1) The latency of 

accessing remote node is significantly longer than local node. (2) 

conflicts between shared-bank accesses result in unpredictable 

memory-access latencies.

Solution

� We considered two type of sharing among tasks: shared buffers and

shared libraries.

� Controller-Aware Memory Coloring:

• Colors the entire memory space of heap, static, stack, and

instruction segments with locality affinity for controller and bank-

awareness.

• Avoid memory accesses to remote node.

• Reduce conflicts among banks.

� Supporting Data Sharing in Mixed-Criticality, Multicore

Systems:

• Implemented two inter-process communication (IPC) mechanisms.

� Producer/consumer buffers (PCBs) and wait-free buffers

(WFBs)

• Proposed three techniques to mitigate interference due to shared

memory.

� Selective LLC ByPass (SBP): Designate a buffer as uncacheable

and allocate it from the Level-C banks.

� Concurrency Elimination (CE): If a buffer is shared by two

tasks at Levels A and/or B, assign both tasks to the same core

and allocate the buffer from that core’s bank.

� LLC Locking (CL): Permanently lock a buffer in the LLC.

� Allowing Shared Libraries while Supporting Hardware

Isolation:

• Introduced per-partition library replicas.

• Implemented a system call to replicate shared libraries.

Conclusions

� Designed Controller-Aware Memory Coloring techniques to 

support memory coloring allocations for entire memory space.

� Avoid remote memory node access, and reduce bank-level 

contention.

� Evaluated on Intel and AMD 16 core platforms and I.MX6 quad-

core platform.

� Implemented two IPC mechanisms based on shared memory.

� Designed three techniques to reduce interference due to sharing 

data among tasks.

� Proposed partitioning heuristics and a criticality-aware 

optimization technique for allocating shared buffers.

� Proposed per-partition replicas of shared libraries to allow sharing 

libraries.

� Conducted micro-benchmarks and large-scale overhead-aware 

schedulability studies.

• System performance for Parsec code is enhanced by our 

Controller-Aware Memory Coloring scheme since it can 

avoid remote access penalty and reduce shared bank 

conflict.

• The “different_controller” of our approach is a policy that 

provides single core equivalence.

Results

• We conducted micro-benchmarks and a large-scale 

overhead-aware schedulability study.

• CL writing times were 2 to 7% of SBP writing times.

• CE writing times were 50 to 60% of SBP writing times.

• SBP provided schedulability benefits in 60% of scenarios. In 

30% of cases, SBP provided schedulability near to Ideal.

• CE and CL provided mild improvement to schedulability in 

20% of considered scenarios.

Node 1Node 0

CPU 0 CPU 1 CPU 2 CPU 3

Shared LLC (L3) cache

CPU 4 CPU 5 CPU 6 CPU 7

Memory Memory

Allowing Shared Libraries while Supporting 

Isolation – Solutions & Results

Design and Implementation

• Per-partition replicas can allow shared libraries to be used 

while preserving isolation properties.

• The first time a shared library is used by a task, a set of 

replicas is created by allocating new pages from the 

appropriate DRAM bank.

• Library content is copied into them.

• The page table entries are modified to reference the replica 

pages instead of the original ones.


