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Abstract

Having a representative workload of the target domain
of a microprocessor is extremely important throughout its
design. The composition of a workload involves two issues:
(i) which benchmarks to select and (ii) which input data
sets to select per benchmark. Unfortunately, it is impossi-
ble to select a huge number of benchmarks and respective
input sets due to the large instruction counts per benchmark
and due to limitations on the available simulation time. In
this paper, we use statistical data analysis techniques such
as principal components analysis (PCA) and cluster anal-
ysis to efficiently explore the workload space. Within this
workload space, different input data sets for a given bench-
mark can be displayed, a distance can be measured between
program-input pairs that gives us an idea about their mu-
tual behavioral differences and representative input data
sets can be selected for the given benchmark. This method-
ology is validated by showing that program-input pairs that
are close to each other in this workload space indeed ex-
hibit similar behavior. The final goal is to select a limited
set of representative benchmark-input pairs that span the
complete workload space. Next to workload composition,
there are a number of other possible applications, namely
getting insight in the impact of input data sets on program
behavior and profile-guided compiler optimizations.

1 Introduction

The first step when designing a new microprocessor is
to compose a workload that should be representative for the
set of applications that will be run on the microprocessor
once it will be used in a commercial product [1, 7]. A work-
load then typically consists of a number of benchmarks with
respective input data sets taken from various benchmarks
suites, such as SPEC, TPC, MediaBench, etc. This work-
load will then be used during the various simulation runs to
perform design space explorations. It is obvious that work-
load design, or composing a representative workload, is ex-
tremely important in order to obtain a microprocessor de-
sign that is optimal for the target environment of operation.
The question when composing a representative workload is
thus twofold: (i) which benchmarks and (ii) which input
data sets to select. In addition, we have to take into account
that even high-level architectural simulations are extremely

time-consuming. As such, the total simulation time should
be limited as much as possible to limit the time-to-market.
This implies that the total number of benchmarks and in-
put data sets should be limited without compromising the
final design. Ideally, we would like to have a limited set
of benchmark-input pairs spanning the complete workload
space, which contains a variety of the most important types
of program behavior.

Conceptually, the complete workload design space can
be viewed as a p-dimensional space with p the num-
ber of important program characteristics that affect perfor-
mance, e.g., branch prediction accuracy, cache miss rates,
instruction-level parallelism, etc. Obviously, p will be too
large to display the workload design space understand-
ably. In addition, correlation exists between these vari-
ables which reduces the ability to understand what program
characteristics are fundamental to make the diversity in the
workload space. In this paper, we reduce the p-dimensional
workload space to a q-dimensional space with q � p (q = 2
to q = 4 typically) making the visualisation of the workload
space possible without losing important information. This
is achieved by using statistical data reduction techniques
such as principal components analysis (PCA) and cluster
analysis.

Each benchmark-input pair is a point in this (reduced) q-
dimensional space obtained after PCA. We can expect that
different benchmarks will be ‘far away’ from each other
while different input data sets for a single benchmark will
be clustered together. This representation gives us an ex-
cellent opportunity to measure the impact of input data sets
on program behavior. Weak clustering (for various inputs
and a single benchmark) indicates that the input set has a
large impact on program behavior; strong clustering on the
other hand, indicates a small impact. This claim is validated
by showing that program-input pairs that are close to each
other in the workload space indeed exhibit similar behavior.
I.e., ‘close’ program-input pairs react in similar ways when
changes are made to the architecture.

In addition, this representation gives us an idea which
input sets should be selected when composing a workload.
Strong clustering suggests that a single or only a few input
sets could be selected to be representative for the cluster.
This will reduce the total simulation time significantly for
two reasons: (i) the total number of benchmark-input pairs
is reduced; and (ii) we can select the benchmark-input pair
with the smallest dynamic instruction count among all the



pairs in the cluster. The reduction of the total simulation
time is an important issue for the evaluation of micropro-
cessor designs since todays and future workloads tend to
have large dynamic instruction counts.

Another important application, next to getting insight
in program behavior and workload composition, is profile-
driven compiler optimizations. During profile-guided op-
timizations, the compiler uses information from previous
program runs (obtained through profiling) to guide com-
piler optimizations. Obviously, for effective optimizations,
the input set used for obtaining this profiling information
should be representative for a large set of possible input
sets. The methodology proposed in this paper can be useful
in this respect because input sets that are close to each other
in the workload space will have similar behavior.

This paper is organized as follows. In section 2, the pro-
gram characteristics used are enumerated. Principal compo-
nents analysis, cluster analysis and their use in this context
are discussed in section 3. In section 4, it is shown that
these data reduction techniques are useful in the context of
workload characterization. In addition, we discuss how in-
put data sets affect program behavior. Section 5 discusses
related work. We conclude in section 6.

2 Workload Characterization

It is important to select program characteristics that af-
fect performance for performing data analysis techniques
in the context of workload characterization. Selecting
program characteristics that do not affect performance,
such as the dynamic instruction count, might discriminate
benchmark-input pairs on a characteristic that does not af-
fect performance, yielding no information about the behav-
ior of the benchmark-input pair when executed on a micro-
processor. On the other hand, it is important to incorpo-
rate as many program characteristics as possible so that the
analysis done on it will be predictive. I.e., we want strongly
clustered program-input pairs to behave similarly so that a
single program-input pair can be chosen as a representative
of the cluster. The determination of what program charac-
teristics to be included in the analysis in order to obtain a
predictive analysis is a study on its own and is out of the
scope of this paper. The goal of this paper is to show that
data analysis techniques such as PCA and cluster analysis
can be a helpful tool for getting insight in the workload
space when composing a representative workload.

We have identified the following program characteris-
tics:

� Instruction mix. We consider five instruction classes:
integer arithmetic operations, logical operations, shift
and byte manipulation operations, load/store opera-
tions and control operations.

� Branch prediction accuracy. We consider the branch
prediction accuracy of three branch predictors: a bi-
modal branch predictor, a gshare branch predictor and
a hybrid branch predictor. The bimodal branch pre-
dictor consists of an 8K-entry table containing 2-bit

saturating counters which is indexed by the program
counter of the branch. The gshare branch predic-
tor is an 8K-entry table with 2-bit saturating coun-
ters indexed by the program counter xor-ed with the
taken/not-taken branch history of 12 past branches.
The hybrid branch predictor [10] combines the bi-
modal and the gshare predictor by choosing among
them dynamically. This is done using a meta predictor
that is indexed by the branch address and contains 8K
2-bit saturating counters.

� Data cache miss rates. Data cache miss rates were
measured for five different cache configurations: an
8KB and a 16KB direct mapped cache, a 32KB and
a 64KB two-way set-associative cache and a 128KB
four-way set-associative cache. The block size was set
to 32 bytes.

� Instruction cache miss rates. Instruction cache miss
rates were measured for the same cache configurations
mentioned for the data cache.

� Sequential flow breaks. We have also measured the
number of instructions between two sequential flow
breaks or, in other words, the number of instructions
between two taken branches. Note that this metric is
higher than the basic block size because some basic
blocks ‘fall through’ to the next basic block.

� Instruction-level parallelism. To measure the amount
of ILP in a program, we consider an infinite-resource
machine, i.e., infinite number of functional units, per-
fect caches, perfect branch prediction, etc. In addition,
we schedule instructions as soon as possible assum-
ing unit execution instruction latency. The only de-
pendencies considered between instructions are read-
after-write (RAW) dependencies through registers as
well as through memory. In other words, perfect reg-
ister and memory renaming are assumed in these mea-
surements.

For this study, there are p = 20 program characteristics
in total on which the analyses are done.

3 Data Analysis

In the first two subsections of this section, we will dis-
cuss two data analysis techniques, namely principal compo-
nents analysis (PCA) and cluster analysis. In the last sub-
section, we will detail how we used these techniques for
analyzing the workload space in this study.

3.1 Principal Components Analysis

Principal components analysis (PCA) [9] is a statisti-
cal data analysis technique that presents a different view
on the measured data. It builds on the assumption that
many variables (in our case, program characteristics) are
correlated and hence, they measure the same or similar
properties of the program-input pairs. PCA computes new



variables, called principal components, which are linear
combinations of the original variables, such that all prin-
cipal components are uncorrelated. PCA tranforms the
p variables X1; X2; : : : ; Xp into p principal components
Z1; Z2; : : : ; Zp with Zi =

Pp

j=1 aijXj . This transforma-
tion has the properties (i) V ar[Z1] > V ar[Z2] > : : : >
V ar[Zp] which means that Z1 contains the most informa-
tion and Zp the least; and (ii) Cov[Zi; Zj ] = 0;8i 6= j
which means that there is no information overlap between
the principal components. Note that the total variance in the
data remains the same before and after the transformation,
namely

Pp

i=1 V ar[Xi] =
Pp

i=1 V ar[Zi].
As stated in the first property in the previous paragraph,

some of the principal components will have a high vari-
ance while others will have a small variance. By removing
the components with the lowest variance from the analysis,
we can reduce the number of program characteristics while
controlling the amount of information that is thrown away.
We retain q principal components which is a significant in-
formation reduction since q � p in most cases, typically
q = 2 to q = 4. To measure the fraction of information
retained in this q-dimensional space, we use the amount of
variance (

Pq

i=1 V ar[Zi])=(
Pp

i=1 V ar[Xi]) accounted for
by these q principal components.

In this study the p original variables are the program
characteristics mentioned in section 2. By examining the
most important q principal components, which are linear
combinations of the original program characteristics, mean-
ingful interpretations can be given to these principal com-
ponents in terms of the original program characteristics. To
facilitate the interpretation of the principal components, we
apply the varimax rotation [9]. This rotation makes the co-
efficients aij either close to �1 or zero, such that the origi-
nal variables either have a strong impact on a principal com-
ponent or they have no impact. Note that varimax rotation is
an orthogonal transformation which implies that the rotated
principal components are still uncorrelated.

The next step in the analysis is to display the various
benchmarks as points in the q-dimensional space built up by
the q principal components. This can be done by computing
the values of the q retained principal components for each
program-input pair. As such, a view can be given on the
workload design space and the impact of input data sets on
program behavior can be displayed, as will be discussed in
the evaluation section of this paper.

During principal components analysis, one can either
work with normalized or non-normalized data (the data is
normalized when the mean of each variable is zero and
its variance is one). In the case of non-normalized data,
a higher weight is given in the analysis to variables with
a higher variance. In our experiments, we have used nor-
malized data because of our heterogeneous data; e.g., the
variance of the ILP is orders of magnitude larger than the
variance of the data cache miss rates.

3.2 Cluster Analysis

Cluster analysis [9] is another data analysis technique
that is aimed at clustering n cases, in our case program-

input pairs, based on the measurements of p variables, in our
case program characteristics. The final goal is to obtain a
number of groups, containing program-input pairs that have
‘similar’ behavior. A commonly used algorithm for doing
cluster analysis is hierarchic clustering which starts with a
matrix of distances between the n cases or program-input
pairs. As a starting point for the algorithm, each program-
input pair is considered as a group. In each iteration of the
algorithm, the two groups that are most close to each other
(with the smallest distance, also called the linkage distance)
will be combined to form a new group. As such, close
groups are gradually merged until finally all cases will be
in a single group. This can be represented in a so called
dendrogram, which graphically represents the linkage dis-
tance for each group merge at each iteration of the algo-
rithm. Having obtained a dendrogram, it is up to the user
to decide how many clusters to take. This decision can be
made based on the linkage distance. Indeed, small linkage
distances imply strong clustering while large linkage dis-
tances imply weak clustering.

How we define the distance between two program-input
pairs will be explained in the next section. To compute
the distance between two groups, we have used the near-
est neighbour strategy or single linkage. This means that
the distance between two groups is defined as the smallest
distance between two members of each group.

3.3 Workload Analysis

The workload analysis done in this paper is a combina-
tion of PCA and cluster analysis and consists of the follow-
ing steps:

1. The p = 20 program characteristics as discussed in
section 2 are measured by instrumenting the bench-
mark programs with ATOM [13], a binary instrumen-
tation tool for the Alpha architecture. With ATOM, a
statically linked binary can be transformed to an instru-
mented binary. Executing this instrumented binary on
an Alpha machine yields us the program characteris-
tics that will be used throughout the analysis. Measur-
ing these p = 20 program characteritics was done for
the 79 program-input pairs mentioned in section 4.1.

2. In a second step, these 79 (number of program-input
pairs) �20 (= p, number of program characteristics)
data points are normalized so that for each program
characteristic the average equals zero and the vari-
ance equals one. On these normalized data points,
principal components analysis (PCA) is done using
STATISTICA [14], a package for statistical computa-
tions. This works as follows. A 2-dimensional ma-
trix is presented as input to STATISTICA that has 20
columns representing the original program character-
istics as mentioned in section 2. There are 79 rows
in this matrix representing the various program-input
pairs. On this matrix, PCA is performed by STATIS-
TICA which yields us p principal components.



3. Once these p principal components are obtained, a
varimax rotation can be done on these data for improv-
ing the understanding of the principal components.
This can be done using STATISTICA.

4. Now, it is up to the user to determine how many prin-
cipal components need to be retained. This decision is
made based on the amount of variance accounted for
by the retained principal components.

5. The q principal components that are retained can be
analyzed and a meaningful interpretation can be given
to them. This is done based on the coefficients aij , also
called the factor loadings, as they occur in the follow-
ing equation Zi =

Pp

j=1 aijXj , with Zi; 1 � i � q
the principal components and Xj ; 1 � j � p the orig-
inal program characteristics. A positive coefficient aij
means a positive impact of program characteristic Xj

on principal component Zi; a negative coefficient aij
implies a negative impact. If a coefficient aij is close
to zero, this means Xj has (nearly) no impact on Zi.

6. The program-input pairs can be displayed in the work-
load space built up by these q principal compo-
nents. This can easily be done by computing Zi =Pp

j=1 aijXj for each program-input pair.

7. Within this q-dimensional space the Euclidean dis-
tance can be computed between the various program-
input pairs as a reliable measure for the way program-
input pairs differ from each other. There are two rea-
sons supporting this statement. First, the values along
the axes in this space are uncorrelated since they are
determined by the principal components which are un-
correlated by construction. The absence of correla-
tion is important when calculating the Euclidean dis-
tance because two correlated variables—that essen-
tially measure the same thing—will contribute a sim-
ilar amount to the overall distance as an independent
variable; as such, these variables would be counted
twice, which is undesirable. Second, the variance
along the q principal components is meaningful since
it is a measure for the diversity along each principal
component by construction.

8. Finally, cluster analysis can be done using the distance
between program-input pairs as determined in the pre-
vious step. Based on the dendrogram a clear view is
given on the clustering within the workload space.

The reason why we chose to first perform PCA and sub-
sequently cluster analysis instead of applying cluster anal-
ysis on the initial data is as follows. The original variables
are highly correlated which implies that an Euclidean dis-
tance in this space is unreliable due to this correlation as ex-
plained previously. The most obvious solution would have
been to use the Mahalanobis distance [9] which takes into
account the correlation between the variables. However,
the computation of the Mahalanobis distance is based on
a pooled estimate of the common covariance matrix which
might introduce inaccuracies.

4 Evaluation

In this section, we first present the program-input pairs
that are used in this study. Second, we show the results
of performing the workload analysis as discussed in sec-
tion 3.3. Finally, the methodology is validated in sec-
tion 4.3.

4.1 Experimental Setup

In this study, we have used the SPECint95 benchmarks
(http://www.spec.org) and a database workload
consisting of TPC-D queries (http://www.tpc.org),
see Table 1. The reason why we chose SPECint95 instead
of the more recent SPECint2000 is to limit the simulation
time. SPEC opted to dramatically increase the runtimes
of the SPEC2000 benchmarks compared to the SPEC95
benchmarks which is beneficial for performance evaluation
on real hardware but impractical for simulation purposes.
In addition, there are more reference inputs provided with
SPECint95 then with SPECint2000. For gcc (GNU C com-
piler) and li (lisp interpreter), we have used all the reference
input files. For ijpeg (image processing), penguin, spec-
mun and vigo were taken from the reference input set. The
other images that served as input to ijpeg were taken from
the web. The dimensions of the images are shown in brack-
ets. For compress (text compression), we have adapted
the reference input ‘14000000 e 2231’ to obtain different
input sets. For m88ksim (microprocessor simulation) and
vortex (object-oriented database), we have used the train
and the reference inputs. The same was done for perl (perl
interpreter): jumble was taken from the train input, and
primes and scrabbl were taken from the reference input;
as well as for go (game): ‘50 9 2stone9.in’ from the train
input, and ‘50 21 9stone21.in’ and ‘50 21 5 stone21.in’
from the reference input.

In addition to SPECint95, we used postgres v6.3 run-
ning the decision support TPC-D queries over a 100MB
Btree-indexed database. For postgres, we ran all TPC-D
queries except for query 1 because of memory constraints
on our machine.

The benchmarks were compiled with optimization level
-O4 and linked statically with the -non shared flag for the
Alpha architecture.

4.2 Results

In this section, we will first perform PCA on the data
for the various input sets of gcc. Subsequently, the same
will be done for postgres. Finally, PCA and cluster analy-
sis will be applied on the data for all the benchmark-input
pairs of Table 1. We present the data for gcc and postgres
before presenting the analysis of all the program-input pairs
because these two benchmarks illustrate different aspects of
the techniques in terms of the number of principal compo-
nents, clustering, etc.



benchmark input dyn (M) stat mem (K)
gcc amptjp 835 147,402 375

c-decl-s 835 147,369 375
cccp 886 145,727 371
cp-decl 1,103 143,153 579
dbxout 141 120,057 215
emit-rtl 104 127,974 108
explow 225 105,222 280
expr 768 142,308 653
gcc 141 129,852 125
genoutput 74 117,818 104
genrecog 100 124,362 133
insn-emit 126 84,777 199
insn-recog 409 105,434 357
integrate 188 133,068 199
jump 133 126,400 130
print-tree 136 118,051 201
protoize 298 137,636 159
recog 227 123,958 161
regclass 91 125,328 117
reload1 778 146,076 542
stmt-protoize 654 148,026 261
stmt 356 138,910 250
toplev 168 125,810 218
varasm 166 139,847 168

postgres Q2 227 57,297 345
Q3 948 56,676 358
Q4 564 53,183 285
Q5 7,015 60,519 654
Q6 1,470 46,271 1,080
Q7 932 69,551 631
Q8 842 61,425 11,821
Q9 9,343 68,837 10,429
Q10 1,794 62,564 681
Q11 188 65,747 572
Q12 1,770 65,377 258
Q13 325 65,322 264
Q14 1,440 67,966 448
Q15 1,641 67,246 640
Q16 82,228 58,067 389
Q17 183 54,835 366

benchmark input dyn (M) stat mem (K)
li boyer 226 9,067 36

browse 672 9,607 39
ctak 583 8,106 18
dderiv 777 9,200 16
deriv 719 8,826 15
destru2 2,541 9,182 16
destrum2 2,555 9,182 16
div2 2,514 8,546 19
puzzle0 2 8,728 19
tak2 6,892 8,079 16
takr 1,125 8,070 36
triang 3 9,008 15

ijpeg band (2362x1570) 2,934 16,183 5,718
beach (512x480) 254 16,039 405
building (1181x1449) 1,626 16,224 2,742
car (739x491) 373 16,294 596
dessert (491x740) 353 16,267 587
globe (512x512) 274 16,040 436
kitty (512x482) 267 16,088 412
monalisa (459x703) 259 16,160 508
penguin (1024x739) 790 16,128 1,227
specmun (1024x688) 730 15,952 1,136
vigo (1024x768) 817 16,037 1,273

compress 14000000 e 2231 (ref) 60,102 4,507 4,601
10000000 e 2231 42,936 4,507 3,318
5000000 e 2231 21,495 4,494 1,715
1000000 e 2231 4,342 4,490 433
500000 e 2231 2,182 4,496 272
100000 e 2231 423 4,361 142

m88ksim train 24,959 11,306 4,834
ref 71,161 14,287 4,834

vortex train 3,244 78,766 1,266
ref 92,555 78,650 5,117

perl jumble 2,945 21,343 5,951
primes 17,375 16,527 8
scrabbl 28,251 21,674 4,098

go 50 9 2stone9.in 593 55,894 45
50 21 9stone21.in 35,758 62,435 57
50 21 5stone21.in 35,329 62,841 57

Table 1. Characteristics of the benchmarks used with their inputs, dynamic instruction count (in
millions), static instruction count (number of instructions executed at least once) and data memory
footprint in 64-bit words (in thousands).

4.2.1 Gcc

PCA and varimax rotation extract two principal components
from the data of gcc with 24 input sets. These two prin-
cipal components together account for 96.9% of the total
variance; the first and the second component account for
49.6% and 47.3% of the total variance, respectively. In Fig-
ure 1, the factor loadings are presented for these two prin-
cipal components. E.g., this means that the first principal
component is computed as PC1 = 0:43� ILP + 0:94 �
bimodal + 0:94 � gshare + : : :. The first component is
positively dominated, see Figure 1, by the branch predic-
tion accuracy, the percentage of arithmetic and logical oper-
ations; and negatively dominated by the I-cache miss rates.
The second component is positively dominated by the D-
cache miss rates, the percentage of shift and control oper-
ations; and negatively dominated by the ILP, the percent-
age of load/store operations and the number of instructions
between two taken branches. Figure 2 presents the vari-
ous input sets of gcc in the 2-dimensional space built up

by these two components. Data points in this graph with a
high value along the first component, have high branch pre-
diction accuracies and high percentages of arithmetic and
logical operations compared to the other data points; in ad-
dition, these data points also have low I-cache miss rates.
Note that these data are normalized. Thus, only relative dis-
tances are important. For example, emit-rtl and insn-emit
are relatively closer to each other than emit-rtl and cp-decl.

Figure 2 shows that gcc executing input set explow ex-
hibits a different behavior than the other input sets. This
is due to its high D-cache miss rates, its high percentage
of shift and control operations, and its low ILP, its low
percentage of load/store operations and its low number of
instructions between two taken branches. The input sets
emit-rtl and insn-emit have a high I-cache miss rate, a low
branch prediction accuracy and a low percentage of arith-
metic and logical operations; for reload1 the opposite is
true. This can be concluded from the factor loadings pre-
sented in Figure 1; we also verified that this is true by in-
specting the original data. The strong cluster in the middle



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
IL

P

b
im

o
d

a
l
B

P

g
s
h

a
re

B
P

h
y
b

ri
d

B
P

ld
/s

t
o

p
s

a
ri

th
o

p
s

lo
g

o
p

s

s
h

if
t
o

p
s

c
tr

l
o

p
s

fl
o

w
b

re
a

k

I$
8

K
B

I$
1

6
K

B

I$
3

2
K

B

I$
6

4
K

B

I$
1

2
8

K
B

D
$

8
K

B

D
$

1
6

K
B

D
$

3
2

K
B

D
$

6
4

K
B

D
$

1
2

8
K

B

principal component 1

principal component 2

Figure 1. Factor loadings for gcc.
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of the graph contains the input sets gcc, genoutput, gen-
recog, jump, regclass, stmt and stmt-protoize. Note that
although the characteristics mentioned in Table 1 (i.e., dy-
namic and static instruction count, and data memory foot-
print) are significantly different, these input sets result in a
quite similar program behavior.

4.2.2 TPC-D

PCA extracted four principal components from the data of
postgres running 16 TPC-D queries, accounting for 96.2%
of the total variance; The first component accounts for
38.7% of the total variance and is positively dominated, see
Figure 3, by the percentage of arithmetic operations, the I-
cache miss rate and the D-cache miss rate for small cache
sizes; and negatively dominated by the percentage of logical
operations. The second component accounts for 24.7% of
the total variance and is postively dominated by the number
of instructions between two taken branches and negatively
dominated by the branch prediction accuracy. The third
component accounts for 16.3% of the total variance and is
positively dominated by the D-cache miss rates for large
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Figure 5. Factor loadings for all program-
input pairs.

cache sizes. The fourth component accounts for 16.4% of
the total variance and is positively dominated by the per-
centage of shift operations and negatively dominated by the
percentage memory operations.

Figure 4 shows the data points of postgres running the
TPC-D queries in the 4-dimensional space built up by these
four (rotated) components. To display this 4-dimensional
space understandably, we have shown the first principal
component versus the second in one graph; and the third
versus the fourth in another graph. This graph does not re-
veal a strong clustering among the various queries. From
this graph, we can also conclude that some queries exhibit
a significantly different behavior than the other queries. For
example, queries 7 and 8 have significantly higher D-cache
miss rates for large cache sizes. Query 16 has a higher
percentage of shift operations and a lower percentage of
load/store operations.

4.2.3 Workload Space

Now we change the scope to the entire workload space.
PCA extracts four principal components from the data of
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all 79 benchmark-input pairs as described in Table 1, ac-
counting for 93.1% of the total variance. The first compo-
nent accounts for 26.0% of the total variance and is pos-
itively dominated, see Figure 5, by the I-cache miss rate.
The second principal component accounts for 24.9% of the
total variance and is positively dominated by the amount of
ILP and negatively dominated by the branch prediction ac-
curacy and the percentage of logical operations. The third
component accounts for 21.3% of the total variance and is
positively dominated by the D-cache miss rates. The fourth
component accounts for 20.9% of the total variance and is
positively dominated by the percentage of load/store and
control operations and negatively dominated by the percent-
age of arithmetic and shift operations as well as the number
of instructions between two sequential flow breaks.

The results of the analyses that were done on these data,
are shown in Figures 6 and 7. Figure 6 represents the
program-input pairs in the 4-dimensional workload space
built up by the four retained principal components. The
dendrogram corresponding to the cluster analysis is shown
in Figure 7. Program-input pairs connected by small link-
age distances are clustered in early iterations of the analysis
and thus, exhibit ‘similar’ behavior. Program-input pairs on
the other hand, connected by large linkage distances exhibit
different behavior.

Isolated points. From the data presented in Figures 6
and 7, it is clear that benchmarks go, ijpeg and compress
are isolated in this 4-dimensional space. Indeed, in the den-
drogram shown in Figure 7, these three benchmarks are
connected to the other benchmarks through long linkage
distances. E.g., go is connected to the other benchmarks
with a linkage distance of 12.8 which is much larger than
the linkage distance for more strongly clustered pairs, e.g.,

2 or 4. An explanation for this phenomenon can be found
in Figure 6. Compress discriminates itself along the third
component which is due to its high D-cache miss rate. For
ijpeg, the different behavior is due to, along the fourth com-
ponent, the high percentage of arithmetic and shift opera-
tions, the high number of instructions between two taken
branches and the low percentage of load/store and control
operations. For go the discrimination is made along the sec-
ond component or the low branch prediction accuracy, the
low percentage of logical operations and the high amount
of ILP.

Strong clusters. There are also several strong clusters
which suggests that only a small number (or in some cases,
only one) of the input sets should be selected to represent
the whole cluster. This will ultimately reduce the total sim-
ulation time since only a few (or only one) program-input
pairs need to be simulated instead of all the pairs within that
cluster. We can identify several strong clusters:

� The data points corresponding to the gcc benchmark
are strongly clustered, except for the input sets emit-
rtl, insn-emit and explow. These three input sets ex-
hibit a different behavior from the rest of the input sets.
However, emit-rtl and insn-emit have a quite similar
behavior.

� The data points corresponding to the lisp interpreter li
except for browse, boyer and takr are strongly clus-
tered as well. This can be clearly seen from Figure 7
where this group is clustered with a linkage distance
that is smaller than 2. The three input sets with a dif-
ferent behavior are grouped with the other li input sets
with a linkage distance of approximately 3. The vari-
ety within li is caused by the data cache miss rate mea-
sured by the third principal component, see Figure 6.
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� According to Figure 7, there is also a small cluster con-
taining TPC-D queries, namely queries 6, 12, 13 and
15.

� All input sets for ijpeg result in similar program behav-

ior since all input sets are clustered in one group. An
important conclusion from this analysis is that in spite
of the differences in image dimensions, ranging from
small images (512x482) to large images (2362x1570),
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the behavior of ijpeg remains quite the same.

� The input sets for compress are strongly clustered as
well except for ‘100000 e 2231’.

Reference vs. train inputs. Along with its benchmark
suite SPECint, SPEC releases reference and train inputs.
The purpose for the train inputs is to provide input sets
that should be used for profile-based compiler optimiza-
tions. The reference input is then used for reporting results.
Within the context of this paper, the availability of reference
and train input sets is important for two reasons. First, when
reference and train inputs result in similar program behav-
ior we can expect that profile-driven optimizations will be
effective. Second, train inputs have a smaller dynamic in-
struction counts which make them candidates for more ef-
ficient simulation runs. I.e., when a train input exhibits a
similar behavior as a reference input, the train input can be
used instead of the reference input for exploring the design
space which will lead to a more efficient design flow.

In this respect, we take the following conclusions:

� The train and reference input for vortex exhibit similar
program behavior.

� For m88ksim on the other hand, this is not true.

� For go, the train input ‘50 9 2stone9.in’ leads to
a behavior that is different from the behavior of the
reference inputs ‘50 21 9stone21.in’ and ‘50 21
5stone21.in’. The two reference inputs on the other
hand, have a quite similar behavior.

� All three inputs for perl (two reference inputs and one
train input) result in quite different behavior.

Reduced inputs. KleinOsowski et al. [8] propose to re-
duce the simulation time of benchmarks by using reduced
input sets. The final goal of their work is to identify a re-
duced input for each benchmark that results in similar be-
havior as the reference input but with a significant reduc-
tion in dynamic instruction counts and thus simulation time.
From the data in Figures 6 and 7, we can conclude that, e.g.,
for ijpeg this is a viable option since small images result in
quite similar behavior as large images. For compress on
the other hand, we have to be careful: the reduced input
‘100000 e 2231’ which was derived from the reference in-
put ‘14000000 e 2231’ results in quite different behavior.
The other reduced inputs for compress lead to a behavior
that is similar to the reference input.

Impact of input set on program behavior. As stated be-
fore, this analysis is useful for identifying the impact of in-
put sets on program behavior. For example:

� The data points corresponding to postgres running the
TPC-D queries are weakly clustered. The spread along
the first principal component is very large and covers
a large fraction of the first component. Therefore, a
wide range of different I-cache behavior can be ob-
served when running the TPC-D queries. Note also
that all the queries result in an above-average branch



prediction accuracy, a high percentage of logical op-
erations and low ILP (negative value along the second
principal component).

� The difference in behavior between the input sets for
compress is mainly due to the difference in the data
cache miss rates (along the third principal component).

� In general, the variation between programs is larger
than the variation between input sets for the same pro-
gram. Thus, when composing a workload, it is more
important to select different programs with a well cho-
sen input set than to include various inputs for the same
program. For example, the program-input pairs for
gcc (except for explow, emit-rtl and insn-emit) and
ijpeg are strongly clustered in the workload space. In
some cases however, for example postgres and perl,
the input set has a relatively high impact on program
behavior.

4.3 Preliminary validation

As stated before, the purpose of the analysis presented
in this paper is to identify clusters of program-input pairs
that exhibit similar behavior. We will show that pairs that
are close to each other in the workload space indeed exhibit
similar behavior when changes are made to the microarchi-
tecture on which they run.

In this section, we present a preliminary validation in
which we observe the behavior of several input sets for gcc
and one input set of each of the following benchmarks: go
and li. The reason for doing a validation using a selected
number of program-input pairs instead of all 79 program-
input pairs is to limit simulation time. The simulations that
are presented in this section already took several weeks. As
a consequence, simulating all program-input pairs would
have been impractically long1. However, since gcc presents
a very diverse behavior (strong clustering versus isolated
points, see Figure 2), we believe that a succesful validation
on gcc with some additional program-input pairs can be ex-
trapolated to the complete workload space with confidence.

We have used seven input sets for gcc, namely explow,
insn-recog, gcc, genoutput, stmt, insn-emit and emit-
rtl. According to the analysis done in section 4.2.1, emit-rtl
and insn-emit should exhibit a similar behavior; the same
should be true for gcc, genoutput and stmt. explow and
insn-recog on the other hand, should result in a different
program behavior since they are quite far away from the
other input sets that are selected for this analysis. For go
and li, we used 50 9 2stone9.in and boyer, respectively.

We used SimpleScalar v3.0 [2] for the Alpha architecture
as simulation tool for this analysis. The baseline architec-
ture has a window size of 64 instructions and an issue width
of 4.

In Figures 8, 9, 10 and 11, the number of instructions re-
tired per cycle (IPC) is shown as a function of the I-cache
configuration, the D-cache configuration, the branch predic-
tor and the window size versus issue width configuration,

1This is exactly the problem we are trying to solve.
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respectively. We will first discuss the results for gcc. After-
wards, we will detail on the other benchmarks.

For gcc, we clearly identify three groups of input sets
that have similar behavior, namely (i) explow and insn-
recog, (ii) gcc, genoutput and stmt, and (iii) insn-emit
and emit-rtl. For example, in Figure 10, the branch behav-
ior of group (i) is significantly different from the other input
sets. Or, in Figure 11, the scaling behavior as a function of
window size and issue width is quite different for all three
groups. This could be expected for groups (ii) and (iii) as
discussed earlier. The fact that explow and insn-recog ex-
hibit similar behavior on the other hand, is unexpected since
these two input sets are quite far away from each other in the
workload space, see Figure 2. The discrimination between
these two input sets is primarily along the second compo-
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nent. Along the first component on the other hand, explow
and insn-recog have a similar value. This leads us to the
conclusion that the impact on performance of the program
characteristics measured along the second principal compo-
nent is smaller than along the first component.

The other two benchmarks, go and li, clearly exhibit a
different behavior on all four graphs. This could be ex-
pected from the analysis done in section 4.2.3 since PCA
and cluster analysis pointed out that these benchmarks have
a different behavior. Most of the mutual differences can be
explained from the analysis done in this paper. For exam-
ple, go has a different D-cache behavior than gcc which is
clearly reflected in Figure 9. Also, li has a different I-cache
behavior than gcc and go which is reflected in Figure 8.

Other differences however, are more difficult to explain.
Again, this phenomenon is due to the fact that some mi-
croarchitectural parameters have a minor impact on perfor-
mance for a given microarchitectural configuration. How-
ever, for other microarchitectural configurations we can still
expect different behavior. For example, go has a different
branch behavior than gcc, according to the analysis done
in section 4.2.3; in Figure 10, go and gcc exhibit the same
behavior.

5 Related work

Saavedra and Smith [11] addressed the problem of mea-
suring benchmark similarity. For this purpose they pre-
sented a metric that is based on dynamic program character-
istics for the Fortran language, for example the instruction
mix, the number of function calls, the number of address
computations, etc. For measuring the difference between
benchmarks they used the squared Euclidean distance. The
methodology in this paper differs from the one presented
by Saavedra and Smith [11] for two reasons. First, the pro-
gram characteristics measured here are more suited for per-
formance prediction of contemporary architectures since we
include branch prediction accuracy, cache miss rates, ILP,
etc. Second, we prefer to work with uncorrelated program
characteristics (obtained after PCA) for quantifying differ-
ences between program-input pairs, as extensively argued
in section 3.3.

Hsu et al. [5] studied the impact of input data sets on pro-
gram behavior using high-level metrics, such as procedure
level profiles and IPC, as well as low-level metrics, such as
the execution paths leading to data cache misses.

KleinOsowski et al.[8] propose to reduce the simulation
time of the SPEC 2000 benchmark suite by using reduced
input data sets. Instead of using the reference input data sets
provided by SPEC, which result in unreasonably long simu-
lation times, they propose to use smaller input data sets that
accurately reflect the behavior of the full reference input
sets. For determining whether two input sets result in more
or less the same behavior, they used the chi-squared statistic
based on the function-level execution profiles for each in-
put set. Note that a resemblance of function-level execution
profiles does not necessarily imply a resemblance of other
program characteristics which are probably more directly
related to performance, such as instruction mix, cache be-
havior, etc. The latter approach was taken in this paper for
exactly that reason. KleinOsowski et al. also recognized
that this is a potential problem. The methodology presented
in this paper can be used as well for selecting reduced in-
put data sets. A reference input set and a resembling re-
duced input set will be situated close to each other in the
q-dimensional space built up by the principal components.

Another possible application of using a data reduction
technique such as principal components analysis, is to com-
pare different workloads. In [3], Chow et al. used PCA to
compare the branch behavior of Java and non-Java work-
loads. The interesting aspect of using PCA in this context is
that PCA is able to identify on which point two workloads
differ.



Huang and Shen [6] evaluated the impact of input data
sets on the bandwidth requirements of computer programs.

Changes in program behavior due to different input data
sets are also important for profile-guided compilation [12],
where profiling information from a past run is used by the
compiler to guide its optimisations. Fisher and Freuden-
berger [4] studied whether branch directions from previ-
ous runs of a program (using different input sets) are good
predictors of the branch directions in future runs. Their
study concludes that branches generally take the same di-
rections in different runs of a program. However, they
warn that some runs of a program exercise entirely differ-
ent parts of the program. Hence, these runs cannot be used
to make predictions about each other. By using the aver-
age branch direction over a number of runs, this problem
can be avoided. Wall [15] studied several types of profiles
such as basic block counts and the number of references to
global variables. He measured the usefulness of a profile as
the speedup obtained when that profile is used in a profile-
guided compiler optimisation. Seemingly, the best results
are obtained when the same input is used for profiling and
measuring the speedup. This implies that every input is dif-
ferent in some sense and leads to different compiler optimi-
sations.

6 Conclusion

In microprocessor design, it is important to have a repre-
sentative workload to make correct design decisions. This
paper proposes the use of principal components analysis
and cluster analysis to efficiently explore the workload
space. In this workload space, benchmark-input pairs can
be displayed and a distance can be computed that gives us an
idea of the behavioral difference between these benchmark-
input pairs. This representation can be used to measure the
impact of input data sets on program behavior. In addition,
our methodology was succesfully validated by showing that
program-input pairs that are close to each other in the prin-
cipal components space, indeed exhibit similar behavior as
a function of microarchitectural changes. Interesting appli-
cations for this technique are the composition of workloads
and profile-based compiler optimizations.
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