
Leakage Energy Management in Cache Hierarchies
�

L. Li, I. Kadayif, Y-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin and A. Sivasubramaniam
Microsystems Design Lab, Pennsylvania State University�

lili, kadayif, ytsai, vijay, kandemir, mji, anand � @cse.psu.edu

Abstract

Energy management is important for a spectrum of sys-
tems ranging from high-performance architectures to low-
end mobile and embedded devices. With the increasing
number of transistors, smaller feature sizes, lower supply
and threshold voltages, the focus on energy optimization
is shifting from dynamic to leakage energy. Leakage en-
ergy is of particular concern in dense cache memories that
form a major portion of the transistor budget. In this work,
we present several architectural techniques that exploit the
data duplication across the different levels of cache hier-
archy. Specifically, we employ both state-preserving (data-
retaining) and state-destroying leakage control mechanisms
to L2 subblocks when their data also exist in L1. Using a
set of media and array-dominated applications, we demon-
strate the effectiveness of the proposed techniques through
cycle-accurate simulation. We also compare our schemes
with the previously proposed cache decay policy. This com-
parison indicates that one of our schemes generates com-
petitive results with cache decay.

1. Introduction

Leakage power of the chip is expected to increase by five
times for each technology generation in the future. This
trend will result in leakage power becoming the dominant
part of the chip power budget for 0.10 micron technology
and below [5]. While dynamic energy will still remain a
concern for components that are exercised and switched of-
ten, leakage energy is of particular concern in the bulky
memory structures. This is due to two reasons: leakage en-
ergy increases with the effective number of transistors in the
circuit and a large transistor budget is allocated for on-chip
memories in current processors.

Many techniques have been proposed in the past to re-
duce cache energy consumption [18, 2]. Among these are
partitioning large caches into smaller structures to reduce

�
This work was supported in part by grants from GSRC, NSF Grants

0103583, 0082064 and CAREER Awards 0093082, 0093085.

the dynamic energy [9] and the use of a memory hierar-
chy that attempts to capture most accesses in the smallest
size memory. However, most of these techniques do lit-
tle to alleviate the leakage energy problem as the memory
cells in all partitions and all levels of the hierarchy continue
to consume leakage power as long as the power supply is
maintained to them, irrespective of whether they are used
or not. Various circuit technologies have been designed
specifically to reduce leakage power when the component
is not in use. Some of these techniques focus on reduc-
ing leakage during idle cycles of the component by turning
off the supply voltage. One such scheme, gated-Vdd, was
integrated into the architecture of caches [19] to dynami-
cally shutdown portions of the cache. This technique was
applied at a cache block granularity in [12] and used in con-
junction with software to remove dead objects in [6]. How-
ever, all these techniques assume that the state (contents) of
the supply-gated cache memory is lost. While totally elim-
inating the supply voltage results in the state of the cache
memory being lost, it is possible to apply a state-preserving
leakage optimization technique if a small supply voltage is
maintained to the memory cell. There are many alternate
implementations that have been recently proposed at the
circuit level to achieve such a state-preserving leakage con-
trol mechanism [15, 16]. As an abstraction of these tech-
niques, the choice between the state-preserving and state-
destroying techniques depends on the relative overhead of
the additional leakage required to maintain the state as op-
posed to the cost of restoring the lost state from other levels
of the memory hierarchy.

An important requirement to reduce leakage energy us-
ing either a state-preserving or a state-destroying leakage
control mechanism is the ability to identify unused re-
sources (or data contained in them). In [19], the cache size
is reduced (or increased) dynamically to optimize the util-
ity of the cache. In [12], the cache block is supply-gated
if it has not been accessed for a period of time. In [20],
hardware tracks the hypothetical miss rate and the real miss
rate by keeping tag line active when deactiving a cache line.
And then the turn-off interval can be dynamically adjusted
based on such information. In [7], dynamic supply voltage
scaling is used to reduce the leakage in the unused portions



of the memory. In contrast to the other schemes, it also pre-
serves data when in low leakage mode. Our technique also
supports a data-preserving leakage control and is based on a
different circuit implementation that has been verified using
circuit simulation. The focus in [8] is on reducing bitline
leakage power using leakage-biased bitlines. The technique
turns off precharging transistors of unused subbanks to re-
duce bitline leakage, and actual bitline precharging is de-
layed until the subbank is accessed. In comparison to the
prior efforts at optimizing memory leakage, in this work,
we focus on exploiting the data duplication present in an
on-chip L1-L2 cache hierarchy (which consists of an L1 in-
struction cache, an L1 data cache, and a unified L2 cache)
to apply the leakage control mechanisms. For example, in
general, in an L1-L2 cache hierarchy, the data present in
L1 is also contained in L2. Our goal is to transition the
cache subblock in L2 to a standby leakage mode when its
data is moved to L1. The goal is to save leakage energy
by keeping only one active copy of the data. Since the sub-
blocks in L2 moved to L1 are the ones that are most recently
used, the cache decay mechanisms proposed previously do
not immediately target these subblocks for leakage opti-
mization. Thus, the mechanism proposed in this paper can
be applied in conjunction with other existing leakage con-
trol mechanisms. Two-level exclusive cache schemes have
also been proposed for improving performance [10]. Our
technique mimics exclusion by putting a duplicated copy to
sleep mode.

In this paper, we make the following major contribu-
tions:

� We present a circuit-level mechanism to implement
state-preserving (data-retaining) leakage control at an
L2 subblock granularity and compare its effectiveness
to state-destroying leakage control.

� Based on these state-preserving and state-destroying
mechanisms, we describe five leakage reduction strate-
gies that exploit data duplication in the cache hierar-
chy. Using a set of media and array-dominated appli-
cations, we demonstrate the effectiveness of the pro-
posed techniques through cycle-accurate simulation.

� We compare our schemes with cache decay policy, a fi-
nite state machine (FSM) based strategy that turns off
cache subblocks when they are idle for a sufficiently
long period of time. This comparison indicates that
one of our schemes is competitive in terms of energy
savings. Furthermore, we show how both techniques
can be applied in conjunction to provide additional en-
ergy gains.

The remainder of this paper is organized as follows. In
the next section, we present technology and circuit support
for leakage energy optimization. In Section 3, we present
five leakage energy optimization strategies in detail. We

compare and integrate these strategies with cache decay in
Section 4. Finally, in Section 5, we summarize our major
contributions .

2. Technology/Circuit Support for Leakage
Control

As feature sizes of transistors continue to decrease, the
supply voltage has to be scaled to keep current densities in
check providing quadratic dynamic energy savings. How-
ever, the increasing number of transistors and increased
clock frequencies have aggravated the power consumption
problem. Another significant technology trend has been the
corresponding decrease in threshold voltage,

���
, along with

the supply voltage. This trend is due to the fact that the
switching speed of a transistor is a function of the difference
between the supply voltage and threshold voltage. From
the leakage energy perspective, this trend is detrimental as
leakage energy increases exponentially with a decrease in
threshold voltage.

Many circuit techniques have thus focused on limiting
the device leakage. One such technique is the use of high-���

transistors on non-critical paths of the circuit [5]. This
technique can help to reduce leakage in these paths when
they are used or idle. Another technique that can be em-
ployed is to introduce a power-switch between the power
supply and the leaking circuit. The PMOS switch provides
a virtual supply voltage to the leaking circuit. The switch
is turned off when the circuit is idle to cut off the supply
voltage, eliminating leakage energy. However, the addition
of the series switch in the circuit between the supply and
the output affects performance by bringing an additional de-
lay. The magnitude of this delay depends on the sizing of
series switch and, with a larger switch, it can be reduced.
Additional dynamic energy is required to turn this power-
switch on and off. There are several variants of this underly-
ing scheme that have been implemented including the super
cut-off CMOS [11] and MTCMOS [5] techniques. Instead
of adding this switch between the supply and the circuit,
a switch could also be added between the ground and the
circuit to reduce leakage as in the gated-Vdd scheme [19].
In all these leakage control schemes, no particular attention
has been paid to preserving the state of the circuit when it is
put into the sleep state.

The key to maintaining the state of a static memory cell
is the operation of the two-chain inverter loop that retains
the state. This inverter chain can maintain the state even
when the supply voltage of the memory cell is dropped to
a very small value, even lower than the threshold voltage
of the device. This state-preserving action happens as the
voltage transfer characteristics of the inverter chain are valid
until the supply voltage drops to about 100 mV [17]. Until
this point, the sub-threshold currents are sufficient to switch



Sleep
Transistor

PMOS

NMOS
Vt

Vt

W/L

W/L

= 0.75/0.07

= 0.40/0.07
= -220mV

= 200mV

W/L = 0.68/0.07
Vt = 200mV

Standby
Bit

BL_(n-1)BL_1BL_0

cell_1 cell_(n-1)

Vdd

/ BL_0 / BL_1 / BL_(n-1)

Set
Reset

cell_0

WL >

Gnd_vr

Figure 1. An L2 subblock augmented with leakage
control mechanism.

the gate between low and high levels and provide sufficient
gain to produce acceptable voltage transfer characteristics
for preserving the state. This observation coupled with the
fact that the leakage energy reduces with decrease in supply
voltage can be used to realize a circuit that achieves state-
preserving leakage control [16].

In order to experimentally verify this behavior, we
custom-designed a 16-bit array of memory cells in 0.07 mi-
cron technology ( Berkeley predictive model [1]) and per-
formed circuit simulation using HSPICE. We observed that
the state of these cells were maintained from a supply volt-
age of 1.0V down to 120mV. In order to achieve a 120mV
voltage, a sized NMOS switch was introduced between
the ground rail and the memory cell. Using the NMOS
switch can reduce both bitline and cell leakage. Note
that gate leakage is not supported by our leakage models.
When the power-switch is turned-on, a normal supply volt-
age is provided to the circuit. However, when the power-
switch is turned-off, the ground level rises to 0.88V from
0V. Note that this is achieved by having an appropriately
sized power-switch that has a controlled leakage to provide
the required minimum supply voltage. A 0.68 � m/0.07 � m
(width/length) NMOS device (with a threshold voltage of
200mV) was used as a power-switch along with each mem-
ory array to achieve the required supply voltage of 120mV
(See Figure 1). However, the leakage reduction provided by
this state-preserving technique is observed to be less than
that when completely dropping the virtual supply voltage
to zero. This is because leakage is required to maintain the
state. We observe from our simulations that the overall leak-
age of the memory array can be reduced to 4% of original
leakage using our state-preserving mechanism. Thus, in this
work, we conservatively assume 10% of original leakage in
the state-preserving mode. For the state-destroying mode,
on the other hand, we assume no leakage energy consump-
tion. We also observe that the performance penalty is neg-
ligible as the resistance of the sized series NMOS switch is
very small.

In our implementations, for both state-preserving and

state-destroying, we turn off the power-switch of the L2
cache subblock during standby and turn it on when the
cache subblock needs to be accessed. We activate and de-
activate the power-switch as shown in Figure 1 using the
standby bit. Whenever the standby bit is set to zero, the
supply voltage drops to 120 mV (resp. � 0 V) to move the
circuit to a standby state-preserving (resp. state-destroying)
leakage control mode. This bit is set to one for the circuit to
return to the normal mode. The logic for setting and reset-
ting the standby bit can be incorporated in the cache refill
logic of the controller. The conditions for setting and re-
setting are dependent on the optimization strategy and are
explained in the next section.

There is additional dynamic energy consumed in switch-
ing these transistors that is reflected as control energy (also
called control overhead) in our experiments. This control
energy is determined by the gate capacitance of the power-
switch and the associated wiring used to control the power-
switch. Further, it takes a finite time for the virtual ground
line to settle after the power-switch is transitioned. In our
design, a 0.68 � m/0.07 � m (width/length) NMOS switch is
connected to every 16 cells to reduce area overhead to 2.3%.
A 19ns (38 cycles) settling time is observed for our design.
In our experiments, we conservatively assume a 50 cycle
virtual supply settling time based on this.

There are additional constraints imposed by the state-
preserving leakage control. Since, the voltage used to main-
tain the state is very small (120 mV), just the effect of turn-
ing on the power-switch rapidly can cause the memory cell
to flip states due to coupling between the input and the out-
put. This requirement imposes a minimum rise time for
the control input at the power-switch and is of the order
of 1V/10ns [16]. This requirement is less stringent than the
settling time for the virtual supply voltage. For the state-
preserving leakage control, it is also important to prevent
memory cells that maintain their state using a small volt-
age from losing state when connected with the bit lines.
This can be avoided by ensuring that the wordline signal
that controls the connection between the memory cell and
the bitlines is suppressed until the memory cells of a cache
line in state-preserving leakage control mode recover to a
normal supply voltage. This logic can easily be incorpo-
rated in the row decoders. A final consideration in the state-
preserving mode is that the circuit operating at a lower sup-
ply voltage is more susceptible to bit flipping due to soft
errors from alpha particle strikes [14]. These soft errors
for memories are presently addressed using additional error
correction bits. However, as the possibility of such errors
increases with reduction in voltage, a more detailed anal-
ysis is required to accurately account for its effect. There
are interesting tradeoffs offered by the amount of leakage
energy that can be saved and the internal node voltage lev-
els (that in turn influence susceptibility to errors). These



tradeoffs are planned as a part of our future work.
If an L2 cache subblock is not accessed after being

placed into low-power mode (using a state-preserving or
state-destroying strategy), we can expect that the state-
destroying mode would save more leakage energy than the
state-preserving mode as the latter still consumes 10% of
the original leakage energy in the standby state. However,
if, after being put into the low-power mode, the cache sub-
block is accessed (either due to the reference residing there
or due to some other reference), the state-destroying mode
pays a high performance and energy penalty (as the data
needs to be accessed from memory). In contrast, under
the same scenario, a cache subblock in the state-preserving
state only needs to be reactivated. Therefore, whether
state-preserving mode performs better than state-destroying
mode depends largely on the duration of idleness for the
cache subblock in question. This is, obviously, a character-
istic of application access pattern and cache hierarchy con-
figuration.

3. Leakage Optimization Strategies and Re-
sults

In this section, we present a set of strategies that exploit
the state-preserving and state-destroying leakage energy
optimization mechanisms and present energy and energy-
delay numbers. As explained below, these strategies differ
from each other with respect to the circuit type that they
employ (state-destroying versus state-preserving), whether
they conservatively or speculatively turn off L2 subblocks,
and the time that the L2 subblocks are reactivated (powered-
on). All strategies power-manage portions of L2 blocks at
the subblock granularity. A subblock of L2 is the same size
as a block of L1 and is the unit of transfer between L1 and
L2.

3.1. Optimization Strategies

� Conservative: In this strategy, when a block in
L1 is written to, the corresponding subblock in L2 is
turned off by setting the standby bit, thereby destroy-
ing data and saving leakage in L2. This is a conserva-
tive strategy as, before turning off the subblock in L2,
it waits until the corresponding block in L1 becomes
dirty. Note that this strategy deactivates only dead L2
blocks (as they are written in L1) and this character-
istic makes it different from the remaining strategies
considered in this paper. It should also be noted that
this strategy cannot optimize instruction accesses as
instructions are not written.

� Speculative-I: In this strategy, when data is
brought from L2 to L1, the corresponding L2 sub-
block is put in a state-preserving leakage control mode.

L1
eviction L2 access

Reactivate

AccessReactivate

Access

Speculative-I

L2 to L1
transfer

Speculative-III

L2 subblock OFF

L2 subblock OFF

Figure 2. Comparison of Speculative-I and
Speculative-III.

Consequently, as compared to the conservative strat-
egy described above, this strategy has two important
differences: it does not wait for the cache block in
L1 to become dirty (i.e., it speculatively turns off the
L2 subblock) and it does not lose data in L2. If
the block in L1 is evicted, no action is performed if
the L1 block is not dirty and the corresponding L2
subblock remains in state-preserving leakage control
mode. Therefore, number of L2 subblocks in sleep
mode can be larger than the number of L1 blocks.
However, as in other strategies, if the evicted L1 block
is dirty, the corresponding L2 subblock is reactivated
and written into. Since a write buffer is employed,
the performance penalty of the reactivation period can
usually be masked.

� Speculative-II: This strategy is similar to
Speculative I, the difference being that the subblock
in L2 is put in the state-destroying mode. So, as long
as the subblock in L2 is in the powered off state, this
strategy saves more leakage energy than Speculative-I
(which uses the state-preserving mode). On the other
hand, when the L2 subblock needs to be accessed,
this strategy pays a higher price than Speculative-I as
it needs to access the off-chip memory (as opposed
to Speculative-I which simply reactivates the L2 sub-
block).

� Speculative-III: This is also similar to Spec-
ulative I except that the L2 subblock is reactivated
whenever the corresponding L1 cache block needs to
be replaced. This early reactivation (as compared to
Speculative I where reactivation occurs only when the
L2 block is accessed) can reduce energy savings com-
pared to Speculative-I. However, it has better perfor-
mance behavior, as when the L2 cache block is ac-
cessed, a separate reactivation time is not spent. This
situation is depicted in Figure 2. In the Speculative-
I case, the cache subblock is in the state-preserving
leakage control mode between the time it is moved to
L1 and the time that the L2 is accessed, whereas in
Speculative-III, it is reactivated when the L1 eviction
occurs. Consequently, in Speculative-III, the L2 sub-



Table 1. Proposed leakage energy saving strategies.
Strategy When is L2 subblock turned off? Energy-saving mechanism in L2 When is L2 subblock reactivated?

Conservative when L1 block becomes dirty state-destroying when accessed
Speculative-I when L2 subblock is moved to L1 state-preserving when accessed
Speculative-II when L2 subblock is moved to L1 state-destroying when accessed
Speculative-III when L2 subblock is moved to L1 state-preserving when L1 block is evicted
Speculative-IV when L2 subblock is moved to L1 state-destroying when L1 block is evicted

block reactivation time can be hidden.
� Speculative-IV: This strategy is similar to

Speculative II except that the L2 subblock is reacti-
vated and written back whenever the corresponding L1
cache block needs to be replaced. Its relative merits
with respect to Speculative II are similar to those of
Speculative III with respect to Speculative I. Similarly,
its advantages/disadvantages compared to Speculative
III are similar to those of Speculative II compared to
Speculative I.

Table 1 summarizes these four strategies highlighting
their differences. It should be noted, however, that when an
evicted L1 cache block is dirty, the corresponding L2 sub-
block needs to be reactivated (by resetting the standby bit)
irrespective of the energy-saving strategy used. Therefore,
this case is not listed separately under the last column in Ta-
ble 1. It also needs to be mentioned that in state-destroying
modes with set-associative caches, when all subblocks in
a given L2 block are moved to L1, this L2 block is inval-
idated, becoming a suitable candidate for the next cache
block replacement in L2. However, if there is a single valid
subblock in the block, the block is considered valid and par-
ticipates in the LRU replacement process.

3.2. Simulation Parameters and Benchmarks

We used Simplescalar 3.0 [4] to implement our energy-
saving optimization strategies. Simplescalar is a tool-set to
simulate application programs on a range of modern proces-
sors and systems using fast execution-driven simulation. It
provides a detailed simulator for an out-of-order issue pro-
cessor that supports non-blocking caches, speculative exe-
cution, and state-of-the-art branch prediction. In this work,
we used the sim-outorder component. Table 2 gives the sim-
ulation parameters used for our base configuration.

We assume that the leakage energy per cycle of the en-
tire L1 cache is equal to the dynamic energy consumed per
access. Further, we assume that the leakage of the L2 sub-
block is equal to that of the L1 block. We evaluated the
effectiveness of these strategies using a set of benchmark
programs. Our benchmarks are codes from MediaBench
suite [13] and FP-intensive routines from Spec and Perfect
Club benchmarks. We selected these two groups of codes
as they represent different access patterns. For each code in
our experimental suite, the simulations are run to comple-
tion. The important characteristics of these benchmarks are

Table 2. Our base configuration.
Simulation Parameter Value

Processor Core
Functional Units 4 integer and 4 FP ALUs

1 integer multiplier/divider
1 FP multiplier/divider

LSQ Size 32 Instructions
RUU Size 64 Instructions
Fetch Width 4 instructions/cycle
Decode Width 4 instructions/cycle
Issue Width 4 instructions/cycle
Commit Width 4 instructions/cycle
Fetch Queue Size 4 instructions
Cycle Time 0.5ns

Cache & Memory Hierarchy
L1 Instruction Cache 32KB, 32 byte blocks,

2-way, 1 cycle latency
L1 Data Cache 32KB, 32 byte blocks,

2-way, 1 cycle latency
L2 Cache 1MB unified, 2-way,

128 byte blocks,
10 cycle latency

Data TLB 128 entries, full-associative,
30 cycle miss latency

Instruction TLB 64 entries, full-associative,
30 cycle miss latency

Memory 100 cycle latency
Energy Management

Technology 0.07 micron
Supply Voltage 1.0V
Virtual Supply Settling Time 50 cycles
Dynamic Energy per L1 Access 0.565nJ
Dynamic Energy per L2 Access 5.83nJ
Leakage Energy per L1 Block
per Active Cycle 0.551pJ
Leakage Energy per L2 Subblock
per Standby Cycle (state-preserving) 0.055pJ
Leakage Energy per L2 Subblock
per Standby Cycle (state-destroying) 0pJ
Control Energy 0.055nJ

listed in Table 3. The fifth and sixth columns in this figure
give the total leakage and dynamic energy consumptions,
respectively, in L1-L2 cache hierarchy assuming all blocks
are powered off until their first use and never turned off after
that. The last column, on the other hand, gives the percent-
age contribution of the L2 cache to overall leakage energy
consumption in the cache hierarchy. It can be observed that
these codes expend a large percentage of leakage energy
(65% of the cache hierarchy energy on the average) and ex-
pend a large fraction of this leakage energy (74.2% on the
average 1) in L2 due to its much larger capacity. Conse-

1This is when no leakage optimization is applied



Table 3. Benchmarks used in our experiments and their important characteristics.
Benchmark Source Input Execution Cycles Cache Energy L2 Leakage

(in millions) Leakage (mJ) Dynamic (mJ) Contribution
adpcm-rawcaudio MediaBench clinton.pcm 4.74 1.88 (17.46%) 8.90 (82.54%) 57.28%
adpcm-rawdaudio MediaBench clinton.adpcm 4.00 1.54 (18.37%) 6.85 (81.63%) 56.41%

cjpeg MediaBench testimg.ppm 7.69 54.25 (72.97%) 20.09 (27.03%) 77.76%
djpeg MediaBench testimg.jpg 2.93 13.61 (71.22%) 5.49 (28.78%) 68.77%
epic MediaBench test image.pgm 21.33 352.65 (85.62%) 59.20 (14.38%) 90.53%

unepic MediaBench test.image.pgm.E 5.53 75.31 (88.29%) 9.98 (11.71%) 88.88%
g721-decode MediaBench clinton.g721 119.09 338.40 (50.47%) 332.10 (49.53%) 55.14%
g721-encode MediaBench clinton.pcm 123.98 353.54 (50.85%) 341.75 (49.15%) 55.30%
mesa-mipmap MediaBench - 37.09 1032.67 (92.75%) 80.75 (7.25%) 94.02%
mesa-osdemo MediaBench - 11.97 315.95 (91.48%) 29.40 (8.52%) 93.77%
mpeg2-decode MediaBench mei16v2.m2v 65.36 638.12 (75.62%) 205.71 (24.38%) 84.30%

tomcatv Spec 273.68KB 11.27 8.81 (71.57%) 3.50 (28.43%) 86.60%
tsf Perfect Club 50.86KB 10.56 1.00 (63.92%) 0.56 (36.08%) 61.65%

vpenta Spec 609.64KB 12.29 22.22 (88.00%) 3.02 (12.00%) 90.16%
wss Perfect Club 31.89KB 11.03 1.63 (41.52%) 2.29 (58.48%) 52.16%

quently, we can expect large leakage energy savings using
our strategies. Most of the energy results given in following
subsections are results normalized with respect to the values
in the fifth and sixth columns of Table 3.

3.3. Limits in Energy Savings

We first present in Figure 3 the results of an optimal (per-
fect) energy optimization strategy (from the leakage per-
spective) in which the L1 and L2 cache blocks are activated
only when they are accessed; otherwise, they are turned off
(in state-destroying sense) to save leakage energy. We as-
sume that the reactivation cost in this optimal scheme (from
both performance and energy perspectives) is zero. We ob-
serve from these results that an optimal leakage optimiza-
tion strategy can reduce the original leakage consumption to
6.6% on the average. Also, the optimal leakage consump-
tion is always below 10% of the original (9.3% being the
largest value). These results serve as a bar against which
our five leakage optimization strategies can be compared. It
should be noted that in practice it is not possible to realize
these optimal leakage savings as reactivation costs are not
zero. It should also be mentioned in obtaining these results
it is assumed that no additional dynamic energy optimiza-
tion strategy is employed.

3.4. Impact of Our Strategies

Figure 4 shows the normalized energy consumption for
our five optimization strategies. Each bar in this figure is
divided into three parts: leakage energy, dynamic energy,
and control overhead (energy). We report dynamic energy
because our leakage optimization strategies may increase
dynamic energy consumption. We can make the following
observations from these results. First, the control overhead
is nearly negligible. This is because, compared to the total
number of cache accesses, the number of state transitions is
very low. In fact, we observe control energy overhead only

Figure 3. Optimal energy consumption (from the
leakage energy perspective).

in the Conservative strategy. This makes sense as in this
strategy the control overhead is directly proportional to the
number of L1 writes.2 Second, among our five strategies,
Speculative-I generates the best energy results. It reduces
leakage energy consumption by 37.1% on the average and
overall cache energy (including dynamic energy and con-
trol overhead as well) by 23.3% on the average. On the
other hand, the average leakage (resp. the average overall
energy) improvements due to Conservative, Speculative-II,
Speculative-III, and Speculative-IV are 8.0% (resp. 1.8%),
-68.4% (resp. -63.9%), 22.8% (resp. 11.7%), and 15.2%
(resp. 4.9%), respectively. (A negative value indicates an
increase in energy consumption).

We now explain why these different strategies per-
formed the way they did. Comparing Speculative-I and
Speculative-II, recall that neither of them reactivates L2
subblock when the corresponding L1 block is evicted. If
a clean block in L1 is evicted, the corresponding subblock
in L2 is in the state-preserving state for Speculative-I but is

2In our codes, the ratio of L1 Writes/Total L1 Accesses varies between
10.1% (epic) and 59.2% (wss).



Figure 4. Normalized energy consumption of our optimization strategies.

in the state-destroying state for Speculative-II. Then, when
the next access occurs, Speculative-I will incur 50 cycle de-
lay (for reactivation), whereas Speculative-II will lead to
100 cycle penalty (for memory access). During this long
memory access all active L1 and L2 blocks leak. Conse-
quently, in most of our codes, Speculative-I exhibits a bet-
ter energy behavior than Speculative-II. There are, however,
exceptions to this general trend: adpcm-rawcaudio,
adpcm-rawdaudio, g721-decode, g721-encode,
and wss. In these codes, the L1 replacement rate (the
ratio between the number of L1 replacements and total
L1 accesses) is very low (around 0.02) and L2 subblocks
stay in energy-saving state longer (which works in favor of
Speculative-II). In comparison, in some benchmarks (e.g.,
epic), the L1 replacement rate was over 80%, making the
state-preserving strategy much more effective.

We now focus on Speculative-III and Speculative-IV. Re-
call that these two schemes differ from Speculative-I and
Speculative-II in that they reactivate the L2 subblock when
the corresponding L1 subblock is evicted. When data is
moved from L2 to L1, Speculative-III places the corre-
sponding subblock into the state-preserving state, whereas
Speculative-IV puts it in the state-destroying mode. So, as
far as a single subblock is concerned, Speculative-IV seems
to be more energy-efficient. However, if all subblocks in a
given L2 block are moved into L1, Speculative-IV invali-
dates the entire L2 cache block (i.e., makes it available for
replacement). After that, when a new access is made to this
cache block, a miss is incurred and main memory needs
to be accessed (a 100 cycle delay). During this memory
access all active cache blocks in L1 and L2 consume leak-
age energy. Although the early reactivation (i.e., reactiva-
tion in L1 block eviction time) tries to write data back from
the L1 cache to the L2 cache, this operation succeeds only
when the cache block is in the valid state (i.e., there exists
at least a single valid L2 subblock in the cache block). In
our scenario, the early reactivation succeeds in Speculative-
III but fails in Speculative-IV. Consequently, in such cases,

Speculative-III might perform better than Speculative-IV.
The results in Figure 4 indicate that in six benchmarks
Speculative-III consumes less energy than Speculative-IV
(due to frequent memory accesses). In the remaining codes,
Speculative-IV performs better than Speculative-III (due to
lack of the above mentioned scenario).

When we compare Speculative-I and Speculative-III,
we see that both of them preserve the data in L2, but
Speculative-III reactivates the subblock in L2 when the
corresponding block is evicted from L1. Therefore, it
tends to maintain the same execution time as the origi-
nal (unoptimized) case, incurring some extra energy due
to early reactivation. Therefore, its energy behavior is
worse than Speculative-I. However, its performance is bet-
ter than Speculative-I in almost all cases. Finally, com-
paring Speculative-II and Speculative-IV, we observe that
although both of them destroy data in L2, Speculative-
IV has a better chance for avoiding main memory access,
thanks to the early reactivation. In most of the bench-
marks, Speculative-IV generated a better energy behavior
than Speculative-II.

Energy consumed in the cache system is only a part
of this picture. To perform a fair comparison between
the different energy optimization strategies, we also need
to account for the additional execution cycles and the ad-
ditional leakage expended in the other parts of the pro-
cessor during these additional cycles. We assume con-
servatively that the contribution of the rest of the proces-
sor (other than the cache subsystem) to the leakage en-
ergy is 30% in our calculations. The energy-delay prod-
uct is a suitable metric that allows to evaluate the impact
of an optimization on both the performance and energy.
The results given in Figure 5 are the normalized energy-
delay products (with respect to the original cache manage-
ment without any leakage energy control). It is easy to
see that Speculative-II and Speculative-IV do not perform
well due to frequent main memory visits resulting from
L2 misses. We observe, however, that the Speculative-



Figure 5. Normalized energy-delay products of our optimization strategies.

Figure 6. Average savings (over all benchmarks)
for different optimization strategies.

I strategy reduces the energy-delay product by 11.1%, on
the average. Apart from Speculative-I, only Speculative-
III improves the energy delay product (9.3% on the aver-
age). State-destroying optimization strategies, on the other
hand, increase energy-delay product by 8.5% (Conserva-
tive), 756.4% (Speculative-II), and 33.5% (Speculative-IV).
Based on these results, we can conclude that working with
a state-preserving mode is extremely important to improve
both energy and the energy-delay product. The first five
groups of bars in Figure 6 show the average values (per-
centage improvements) for our five optimizations across all
benchmark programs for leakage energy, overall cache en-
ergy, and energy-delay product.

4. Comparison and Integration with Other
Strategies

In [12], Kaxiras et al. present a leakage energy reduc-
tion technique for cache memories. This technique, called
cache decay, is based on the idea that a cache block that is

not used for a sufficiently long period of time can be consid-
ered dead. More specifically, with each cache block, they
associate a small 4-state FSM (finite state machine). The
FSM steps through these states as long as the cache block
is not accessed. When the last state is reached, the cache
block is turned off. In [12], they applied this strategy to L1
caches and showed that cache decay reduces the L1 cache
leakage energy by a factor of four in Spec2000 applications
without much impact on performance.

To compare this technique with our approach, we imple-
mented cache decay in SimpleScalar [4] and performed ex-
periments. The first implementation (called Decay-I) is a
straightforward extension of their approach to a cache hier-
archy (instead of just the L1 cache). Specifically, we applied
the cache decay method to both L1 and L2 using the state-
destroying leakage saving technology. Then, we further en-
hanced this scheme by employing the state-destroying strat-
egy in L1 and the state-preserving strategy in L2. In this
second implementation (called Decay-II), the L2 cache
is energy-managed at the subblock granularity and the FSM
is used to transition L2 subblocks into a state-preserving
mode (as opposed to the state-destroying mode in Decay-I).
In both of these implementations, we used the threshold val-
ues used in [12] (i.e., 10K cycles for L1 and 1M cycles for
L2). Note that it is not useful to apply the state-preserving
leakage control in the L1 cache as the penalty for transition-
ing from the state-preserving leakage control state is larger
than the latency to access L2 (50 cycles versus 10 cycles).

In addition to these two strategies, we implemented two
strategies that combine the cache decay scheme with our
optimization strategy. Speculative-Decay-I corre-
sponds to a strategy where L1 leakage energy is opti-
mized using cache decay method, whereas the L2 cache
energy is optimized using our Speculative-I strategy. Fi-
nally, Speculative-Decay-II employs cache decay
for L1, but uses both cache decay (as in Decay-II) and our
Speculative-I strategy for L2. The reason that we used



Figure 7. Normalized energy consumption of cache decay and combined strategies.

Speculative-I in these last two versions (instead of other
speculative strategies) is that it performs better than others
as shown through our experimental results discussed earlier.

Figures 7 and 8 show the normalized energy consump-
tions and energy-delay products, respectively, for these
last four strategies mentioned above. It can be observed
that Decay-I performs quite well and improves leakage en-
ergy consumption and overall cache energy by 41.8% and
25.3%, on the average. However, it increases execution cy-
cles as, under this optimization scheme, it is possible that a
cache block can be destroyed in L1 as well as in L2. Con-
sequently, it incurs frequent main memory accesses, thus
degrading the energy-delay product by 55.1%. In most
cases, Decay-II improves over Decay-I in both energy and
energy-delay product. It improves leakage energy, total
cache energy, and energy-delay product by 49.9%, 31.9%,
and 19.6%, respectively. This is because in Decay-II, the
L2 cache management does not destroy data, thereby pre-
venting frequent main memory accesses. Also, as com-
pared to Decay-I, it manages L2 leakage energy in subblock
granularity. Recall that Speculative-I’s leakage energy, total
cache energy, and energy-delay product improvements were
37.1%, 23.3%, and 11.1%, respectively. So, Decay-I brings
only a small improvement over Speculative-I in energy, but
the former suffers from long execution times. Decay-II,
however, performs better than Speculative-I in all aspects. It
should also be stressed that while Speculative-I targets only
the L2 cache, Decay-I and Decay-II target both caches and
hence they have potentially larger optimization scope. In
fact, comparing the savings only in the L2 cache shows that
Speculative-I, Decay-I, and Decay-II reduce leakage energy
consumption by 54.6%, 29.9%, and 39.37%.

Speculative-Decay-I outperforms Decay-II as far as en-
ergy consumption is concerned. It improves the unopti-
mized leakage energy by 62.9% and overall cache energy
by 39.3%. However, it increases execution time and thus its
energy-delay product (-11.1%) is worse than Decay-II. This
is because of the following frequently-occurring scenario.

When an L2 subblock is brought into L1, in Speculative-
Delay-I, this subblock is placed into the state-preserving
leakage control mode in L2. Later, when the block in L1
is evicted, the corresponding L2 subblock needs to be ac-
tivated and the associated penalty is paid. In contrast, in
Decay-II, under the same scenario, the same L2 subblock is
not put in the state-preserving leakage control mode; there-
fore, it can be accessed quickly. However, in some bench-
marks such as epic, before this scenario takes place, the
entire L2 cache block can be evicted by Decay-II. In such
cases, Speculative-Decay-I outperforms Decay-II.

Finally, Speculative-Decay-II generates the best energy
results among these optimization strategies. As compared
to the unoptimized case, it improves leakage and overall
cache energy by 74.4% and 47.3%, respectively. These en-
ergy benefits are due to its aggressive optimization strat-
egy in L2. More specifically, the two different methods
(Speculative-I and cache decay) compete with each other
to optimize L2 energy. Its energy-delay product, however,
is -2.3%, which is worse than that of Decay-II (19.6%).
Again, this is because of the scenario mentioned in the pre-
vious paragraph. The last four groups of bars in Figure 6
summarize the average improvements for the four optimiza-
tion strategies discussed in this section from the leakage en-
ergy, overall cache energy, and energy-delay product per-
spectives.

5. Conclusions

Duplication of data and instructions at different levels of
memory hierarchy is costly from the leakage energy per-
spective. This paper first examined a leakage control mech-
anism that can preserve the state of the memory cell. Us-
ing this state-preserving leakage control mechanism and
a state-destroying leakage control mechanism, we investi-
gated five different strategies to put L2 subblocks that hold
duplicate copies of L1 blocks in energy saving states (leak-
age control modes). These strategies differed from each



Figure 8. Normalized energy-delay products of cache decay and combined strategies.

other with respect to the circuit type that they employ (state-
destroying versus state-preserving), whether they conserva-
tively or speculatively turn off L2 subblocks, and the time
that the L2 subblocks are reactivated. Our experimental re-
sults indicated that the best strategy (Speculative-I) in terms
of energy and energy-delay product is to place the L2 sub-
block into a state-preserving leakage control mode as soon
as its contents are moved to L1 and to reactivate it only
when it is accessed. We then integrated this strategy with a
previously proposed optimization scheme, called cache de-
cay, and showed that the integrated strategy generates better
energy results. We believe that this work is a step towards
achieving our eventual goal of optimizing energy consump-
tion at different levels of the architecture without sacrificing
too much performance.

References

[1] Berkeley predictive model
http://www-device.eecs.berkeley.edu.

[2] D. H. Albonesi. Selective cache ways: on demand cache
resource allocation. In MICRO-32, pp. 248–259, Nov. 1999.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In ISCA-27, June 2000.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool-set,
Version 2.0. Technical Report 1342, Dept. of Computer Sci-
ence, UW, June 1997.

[5] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. IEEE Press,
2001.

[6] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and M. Wolczko. Tuning garbage collection in an
embedded java environment. In HPCA-8, Feb. 2002.

[7] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. In ISCA-29, May 2002.

[8] S. Heo, K. Barr, M. Hampton, and K. Asanovic. Dynamic
fine-grain leakage reduction using leakage-biased bitlines.
In ISCA-29, May 2002.

[9] K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low-power
RAM circuit technologies. Proceedings of IEEE, 83(4):524–
543, Apr. 1995.

[10] N. Jouppi and S. Wilton. Tradeoffs in two-level on-chip
caching. In ISCA-21, pp. 34–45. IEEE Computer Society
Press, 1994.

[11] H. Kawaguchi, K. Nose, and T. Sakurai. A super cut-
off CMOS scheme for 0.5V supply voltage with pico-
ampere standby current. Journal of Solid-State Circuits,
35(10):1498–1501, Oct. 2000.

[12] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploit-
ing generational behavior to reduce cache leakage power. In
ISCA-28, June 2001.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: a tool for evaluating and synthesizing multimedia
and communications systems. In MICRO-30, pp. 330–335,
Dec. 1997.

[14] T. May and M. Woods. Alpha-particled-induced soft errors
in dynamic memories. IEEE Trans. on Electron Devices,
ED-26(1), Jan. 1979.

[15] P. R. V. d. Meer and A. V. Staveren. Standby-current reduc-
tion for deep sub-micron VLSI CMOS circuits: smart series
switch. In the ProRISC/IEEE Workshop, pp. 401–404, Dec.
2000.

[16] B. Nikolic. State-preserving leakage control mechanisms.
Gigascale Silicon Research Center Annual Report, Sept.
2001.

[17] J. Rabaey. Digital integrated circuits: a design perspec-
tive. Prentice Hall Inc. online revisions of new chapters.
http://bwrc.eecs.berkeley.edu/Classes/ICDesign/
EE141f00/notes.html.

[18] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero com-
pression for cache energy reduction. In MICRO-33, Dec.
2000.

[19] S. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijayku-
mar. An integrated circuit/architecture approach to reducing
leakage in deep-submicron high-performance I-caches. In
HPCA-7, Jan. 2001.

[20] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte.
Adaptive mode control: A static-power-efficient cache de-
sign. In International Conference on Parallel Architectures
and Compilation Techniques (PACT’01), Sept. 2001.


