
Predicting Conditional Branches With Fusion-Based Hybrid Predictors∗

Gabriel H. Loh1 Dana S. Henry2,1

gabriel.loh@yale.edu dana.henry@yale.edu

Yale University
1Dept. of Computer Science

2Dept. of Electrical Engineering
New Haven, CT, USA

Abstract
Researchers have studied hybrid branch predictors that
leverage the strengths of multiple stand-alone predictors.
The common theme among the proposed techniques is a
selection mechanism that chooses a prediction from among
several component predictors. We make the observation
that singling out one particular component predictor ig-
nores the information of the non-selected components. We
propose Branch Prediction Fusion, originally inspired by
work in the machine learning field, which combines or fuses
the information from all of the components to arrive at a fi-
nal prediction. Our 32KB predictor achieves the same over-
all prediction accuracy as the 188KB versions of the previ-
ous best performing predictors (the Multi-Hybrid and the
global-local perceptron).

1. Introduction
Superscalar processors capable of executing multiple in-
structions per cycle need accurate branch prediction to pro-
vide a steady stream of useful instructions. The cost of
a branch misprediction can mean many cycles of wasted
work, and many cycles before the functional units resume
executing useful instructions along the correct flow of con-
trol. The extremely deeply pipelined microarchitectures of
future superscalar processors further exacerbate the prob-
lem [28].

As the processor clock cycle shrinks to increase proces-
sor throughput, there is less time for the branch prediction
logic to arrive at a prediction. Large branch predictors pro-
vide more accurate branch predictions, but the correspond-
ing slowdown in clock speed can result in lower overall per-
formance. Jiménez and Lin show how large branch pre-
dictors can be integrated into an aggressively clocked pro-
cessor pipeline [14]. In particular, the overriding predic-
tor allows a processor with a large, multi-cycle predictor
to achieve ILP levels that are close to a processor with an
idealized, single-cycle version of the same predictor.

This paper presents a new technique for designing large

∗This research was supported by NSF Grant MIP-9702281.

hybrid branch predictors. Past research in hybrid branch
prediction has focused on the problem of how to select a
correct prediction from a pool of several component predic-
tors. This approach only makes use of the selected predic-
tor; the information of the other non-selected components
remains unutilized. Our technique uses the combination, or
fusion, of all of the component predictors to improve branch
prediction rates.

This paper is organized as follows. Section 2 describes
the idea of Branch Prediction Fusion at a high-level and
explains the original motivation for this work. Section 3
presents a brief overview of previous related work. In
Section 4, we detail our simulation environment and ex-
plain our predictor optimization methodology. Section 5 de-
scribes our fusion-based hybrid branch prediction scheme,
the Combined Output Lookup Table (COLT) predictor. In
Section 6, we provide a classification of correctly pre-
dicted branches to determine the importance of the differ-
ent branch predictor components, and we further explore
the design space for the COLT predictor. We draw our final
conclusions in Section 7 and also discuss some directions
for future research.

2. The Idea
In the pursuit of more accurate branch prediction algo-
rithms, past studies have researched several ways of com-
bining different branch predictors to form hybrid branch
predictors [4, 7, 8, 9, 22]. All of the proposed hybrid predic-
tors consist of two or more component branch predictors,
and a meta-predictor that selects one of the components.
We make the observation that selection-based hybrid pre-
dictors ignore the information conveyed by the predictions
of the non-selected components.

In this paper, we introduce the concept of designing hy-
brid branch predictors by branch prediction fusion. Branch
prediction fusion covers any hybrid branch predictor that
combines or fuses the predictions of multiple component
predictors to form a final prediction. Figure 1 illustrates the
difference between branch prediction selection and branch
prediction fusion. Instead of having the meta-predictor

P1 P2 Pn

Final
Prediction

P1 P2 Pn

Final
Prediction

Fusion

Prediction
Prediction

Selection

(a) (b)

Figure 1: (a) Prediction-selection selects one-of-n predictors.
(b) Prediction-fusion incorporates information from all n pre-
dictors.

make a selection among the predictors (Figure 1a), the
meta-predictor makes the final prediction itself (Figure 1b).

Our initial fusion-based predictor was inspired by the
Weighted Majority Algorithm from the machine learning
field [20]. Instead of selecting one particular component
to make the final prediction, our Weighted Majority Branch
Predictor (WMBP) takes a vote among all components. The
vote of each component is weighted depending on the past
performance of the predictor. An important fact that we ob-
served is that the combined weights of multiple components
frequently override the component with the largest weight
to yield a correct final prediction. For example, we found
that for the gcc benchmark, branches where the weighted
majority overrule the best predictor (the predictor with the
highest corresponding weight) occur over 80% more fre-
quently than when the weighted majority is incorrect while
the best predictor is correct. Due to the complexity of im-
plementing the Weighted Majority Algorithm in hardware,
we do not explore the WMBP any further in this paper.
Instead, we propose a simpler, and more accurate, fusion-
based hybrid predictor called the Combined Output Lookup
Table (COLT) predictor.

Branch prediction fusion is a new technique for combin-
ing predictors. By incorporating the predictions of a vari-
ety of predictors, we get the benefits of considering vari-
able branch history lengths [30], dynamically changing his-
tory lengths [16], simultaneously using both global and lo-
cal branch history [26], as well as taking advantage of the
best stand-alone (non-hybrid) prediction algorithms avail-
able [15]. Another result of this work is that we show that
hybrid branch prediction can still provide better prediction
rates, despite the continual development of better stand-
alone prediction algorithms [15, 18, 23]. This will hope-
fully encourage researchers to continue the search for better
individual prediction algorithms, as well as to develop bet-
ter hybridization techniques.

P1 P2

(a)

P1 P2

(b)

Priority Encoder

Pn

PAs loop

(c)

Long
global

Short
global

Figure 2: Selection-based hybrid predictors: (a) the Tourna-
ment predictor, (b) the Multi-Hybrid from [8], (c) the Multi-
Hybrid from [7] (we use Quad-Hybrid in this paper to distin-
guish between the two).

3. Related Work
There has been an abundance of research in the area of dy-
namic branch prediction. In this section, we only review the
work most relevant to branch prediction fusion.

The first hybrid branch prediction scheme was the tour-
nament predictor proposed by McFarling [22]. The tour-
nament scheme is limited to selecting from only two com-
ponent predictors. Figure 2a illustrates the tournament sel-
ection mechanism. The branch address indexes into a table
of saturating two-bit counters. The most significant bit of
the counter selects from one of the two component predic-
tors. Chang et al extended the tournament selection table to
a two-level table that incorporates branch history to further
improve prediction rates [3].

The first hybrid branch predictor to support an arbitrary
number of component predictors was Evers et al’s Multi-
Hybrid predictor [8]. As shown in Figure 2b, the Multi-
Hybrid maintains a table of vectors of two-bit counters.
Each counter corresponds to one of the component pre-
dictors. The selection mechanism chooses the component
whose counter has the maximum value of three. In the
case that more than one counter equals three, a predeter-
mined precedence ordering breaks the tie. The counter up-
date rules guarantee that at least one counter equals three.

Evers’ dissertation provides detailed information and
analysis of the behavior of branches [7]. From these re-
sults, Evers designed a refined version of the Multi-Hybrid
predictor which consists of four component predictors (to
differentiate between the two Multi-Hybrids, we will re-
fer to this version as the Quad-Hybrid since all configu-

rations use four component predictors). Figure 2c shows
how the Quad-Hybrid prediction scheme is a tournament
prediction scheme where each component is also a tour-
nament predictor (highlighted by the dashed boxes). The
first sub-tournament consists of two gshare predictors that
utilize different branch history lengths. A selective update
strategy is used on the long history gshare. The second sub-
tournament combines a local history predictor (PAs) [32]
with a loop predictor [2, 8]. A final table of counters se-
lects between the global-history predictors and the local-
history/loop predictors. The meta-prediction tables incor-
porate global branch history similar to the two-level tourna-
ment predictor [3]. The counters used in the selection tables
are three bits wide instead of two. It was found that three-bit
counters yield more stable selections and are less sensitive
to fluctuations in the behavior of the branch predictors.

Besides these purely dynamic hybrid branch prediction
schemes, compiler and profile assisted approaches have also
been proposed. Branch Classification uses profile informa-
tion to statically assign branches as always taken, always
not-taken, or dynamically predicted by a tournament-styled
predictor [4]. Static hybrid predictors have also been pro-
posed. The static hybrid predictor is a variant of the Multi-
Hybrid (from [8]) where the dynamic selection mechanism
has been replaced by a branch hint that chooses which com-
ponent to use. Static prediction schemes are sometimes un-
desirable because modifications to the ISA are necessary to
convey the static decisions, programs must be profiled and
recompiled to receive any benefit and therefore it does not
help existing applications, and poor performance may result
if the data sets used during the profiling phase are not repre-
sentative of actual runtime behavior. For these reasons, we
only consider purely dynamic approaches in this paper.

Our branch prediction fusion approach combines the out-
puts of several different kinds of branch predictors. There
are some similarities to Skadron et al’s alloyed history pre-
dictors [26]. In the course of categorizing branch mispredic-
tions, Skadron et al discovered that some branches require
both global and local history to accurately predict. The al-
loyed history branch predictor combines multiple types of
branch history, whereas our branch prediction fusion ap-
proach combines multiple types of branch predictor outputs.
The global/local perceptron predictor [13] is basically an al-
loyed history version of the basic perceptron predictor [15].

The gskewed predictor [23] is related to our Weighted
Majority hybrid predictor in that both make use of majority
functions to combine multiple inputs. The gskewed predic-
tor uses an unweighted majority to reduce the effects of in-
terference in the pattern history tables whereas the Weighted
Majority Branch Predictor uses a weighted majority to com-
bine the predictions of different components.

To optimize our hybrid predictor configurations, we used
a genetic search algorithm [11]. Emer et al used a genetic

programming approach to optimize branch predictors and
indirect branch predictors [6]. They developed a language
to generically describe branch predictors, and then used ge-
netic programming to optimize over tree representations of
the branch predictor language. In our study, we are inter-
ested in selecting components for a hybrid predictor which
is easily encoded in a fixed length bit string. This allows us
to use a simpler genetic algorithm.

4. Methodology
In this section, we describe our methodology for simulating
and evaluating branch prediction algorithms. We also de-
tail our approach for optimizing the components in hybrid
branch predictors.

4.1. Simulation Environment

We collected traces of conditional branches from the in-
teger benchmarks of the SPEC2000 suite [31]. Using the
functional in-order simulator from the SimpleScalar toolset
for the Alpha instruction set [1], we collected 500 mil-
lion branches from each benchmark using the train input
sets. We also skipped over the initial 100 million con-
ditional branches to avoid start-up effects. The binaries
were compiled on an Alpha 21264 using cc with full op-
timizations. The reported misprediction rates are arithmetic
means across all benchmarks, except in the cases where we
examine the benchmarks individually.

For our ILP study, we modified the MASE simulator1

to support the predictors analyzed in this paper [17]. We
also simulated an overriding predictor configuration to sup-
port large branch predictors in a very fast clock speed pro-
cessor [14]. We fast forward past the initial start-up code,
and then we simulate 100 million instructions because the
MASE out-of-order processor simulator is much slower
than our trace-fed branch predictor simulator. The binaries
and input files are identical to those used for the mispredic-
tion rate simulations.

4.2. Genetic Search for Hybrid Predictors

Choosing components for a hybrid branch predictor is an
enormous search problem. Indeed, even optimizing a single
type of branch predictor may require large amounts of com-
putation if the number of parameters is large. We performed
all of our tuning and optimization using traces of the first ten
million conditional branches from the SPEC test inputs to
avoid over-training of the predictors.

We first individually optimized the component branch
predictors. The component predictors considered are bi-
modal [27], gshare [22], Bi-Mode [18], enhanced gskewed
with partial update [23], YAGS [5], PAs [32], pshare and

1We used a pre-release version of the MASE simulator. The MASE
simulator will be part of SimpleScalar version 4.0 [1].

gshare
size PHT entries history length
1KB 4096 7
2KB 8192 8
4KB 16384 9
8KB 32768 15

16KB 65536 16
32KB 131072 17
64KB 262144 18

PAs
size BHT entries PHT entries history length

0.88KB 512 2048 6
2KB 2048 2048 6

3.75KB 2048 8192 7
8KB 4096 16384 8

16KB 8192 32768 8
32KB 16384 65536 8
52KB 16384 131072 10

Bi-Mode
size PHT entries history length

0.38KB 512 6
0.75KB 1024 8
1.5KB 2048 10
3KB 4096 11
6KB 8192 13

12KB 16384 14
24KB 32768 15
48KB 65536 16

Enhanced pskewed
size BHT entries PHT entries history length

1.88KB 512 2048 6
3.75KB 1024 4096 6
7.75KB 2048 8192 7
16.5KB 4096 16384 9
33KB 8192 32768 9

Enhanced gskewed
size PHT entries history length

0.38KB 512 7
0.75KB 1024 8
1.5KB 2048 9
3KB 4096 12
6KB 8192 13

12KB 16384 14
24KB 32768 15
48KB 65536 16

bimodal
size num 2-bit counters
1KB 4096
2KB 8192
4KB 16384
8KB 32768

16KB 65536
32KB 131072
64KB 262144

YAGS
size PHT entries history length

0.63KB 512 8
1.25KB 1024 9
2.5KB 2048 10
5KB 4096 11

10KB 8192 12
20KB 16384 13
40KB 32768 14

loop
size num loop counters counter width

0.75KB 1024 6
1KB 1024 8

1.5KB 2048 6
2KB 2048 8

Alloyed (global/local) perceptron
2KB, 4KB, 8KB, 18KB, 30KB, 53KB configurations in [13].

Table 1: The sizes and parameters of the 59 component predictors considered for inclusion in our fusion-based hybrid predictors.

Name Hardware Components VMT Counter History
Budget Counters Width c Length h

α 16KB alpct(8KB) Enh.gskewed(3KB) gshare(2KB) 2048 4 8
β 32KB alpct(8KB) gshare(8KB) 8192 4 7

gshare(4KB) PAs(3.75KB)
γ 64KB alpct(30KB) gshare(16KB) 16384 4 10

YAGS(5KB) Enh.pskewed(3.75KB)
δ 128KB alpct(30KB) alpct(18KB) gshare(16KB) 16384 4 7

Enh.gskewed(6KB) YAGS(10KB) PAs(32KB)
η 256KB alpct(53KB) alpct(8KB) gshare(64KB) 32768 4 4

Bi-Mode(48KB) Enh.gskewed(24KB) PAs(32KB)

Table 2: The COLT configurations chosen by our genetic algorithm. alpct stands for alloyed perceptron.

pskewed [7], a local history Bi-Mode, the loop predic-
tor [2, 8], and the alloyed history (global/local) perceptron
predictor [13]. For all components except for the alloyed
perceptron and the loop predictor, we performed an exhaus-
tive search of the parameter space. For the alloyed percep-
tron, we used the optimal configurations reported in [13].

After optimizing the component branch predictors, we
used these predictors as candidates for inclusion in our hy-
brid predictor configurations. We considered the 59 differ-
ent configurations listed in Table 1 with sizes ranging from
1KB to 64KB. There are 259 possible ways the components
can be chosen. The search space is even larger when the
parameters of the meta-predictor are factored in as well.
To optimize our hybrid predictors over such a huge search
space, we used a genetic algorithm approach [11].

The encoding of our search problem as a genetic algo-
rithm is straightforward. Each hybrid predictor configura-
tion is encoded as a bit string. The first 59 bits correspond
to the potential components, where a 1 denotes the inclu-
sion of the corresponding component. The binary encoded
parameters of the meta-predictor are concatenated after the
component inclusion bits.

For each execution of the genetic algorithm, we use a
fixed hardware budget such that any configuration that ex-
ceeds this limit is not considered. The genetic algorithm
executes as follows. An initial population of individuals is
generated at random; invalid individuals (e.g. ones that ex-
ceed the hardware budget) are removed and replaced with
another random configuration. Each individual of the popu-
lation is then simulated and we use the average branch pre-
diction rate as the fitness function. From this information,
we select the best configurations to produce the following
generation, and then the process is repeated.

Our rules for generating a new generation of predictors
is as follows. We select the best k configurations as poten-
tial parents. Out of these k configurations, two parents are
selected at random with the constraint that they are not the
same individual. A crossover point is selected at random
to create a new configuration. The new configuration con-
sists of all of the bits from one parent up to the crossover
point. All remaining bits are inherited from the other par-
ent. In addition to the crossover operation, a variety of mu-
tations may also occur at random. These mutations include
randomly flipping bits in the configuration encoding, and
randomly incrementing or decrementing the meta-predictor
parameter fields.

For our experiments, the population of each generation
consisted of 32 configurations, and we ran the search for
a total of 20 generations. We chose a value of k = 10 to
roughly correspond to the top-third of each generation. We
used hardware budgets of 16KB to 256KB in factor of two
increments. The hardware budget imposes a fairly irregu-
lar boundary to the space of allowable configurations. To

prevent a population from getting stuck in a local extrema
for too long, we used fairly high mutation probabilities.
The probability of a random bit flip was 0.2 (independently,
per bit), and the probability of incrementing/decrementing a
meta-predictor parameter field was 0.5. All of the constants
for the genetic algorithm were empirically chosen.

5. The COLT Hybrid Predictor
We found that the Weighted Majority Branch Predictor
(WMBP) achieves better prediction rates than a selection-
based Multi-Hybrid with the same components. Unfortu-
nately, the WMBP is complex and slow, especially if it must
be serialized after the individual component lookups. Com-
puting a weighted majority requires looking up the weights,
multiplication (albeit only by 0 or 1), and adding all of the
weights together. The Weighted Majority algorithm learns
monotone Boolean functions from the components’ predic-
tions to the final prediction. A monotone Boolean function
is still a Boolean function, and so we use a lookup table
instead. A lookup table is much simpler to implement in
hardware, and it can also handle non-monotone mappings
if they exist. Our proposed lookup table based prediction
fusion algorithm is called the Combined Output Lookup Ta-
ble (COLT).

5.1. Predictor Description

The COLT consists of the n component predictors,
P1,P2, ...,Pn, and a collection of mapping tables that maps
the predictor outputs to a final overall prediction. This is
illustrated in Figure 3. Each entry of the Vector of Mapping
Tables (VMT) is a 2n entry mapping table. The entries of the
mapping tables are c-bit saturating counters. Similar to the
2-level tournament and the Quad-Hybrid meta-predictors,
we also include branch history to correlate mappings to past
branch outcomes.

The COLT fusion predictor has three parameters. The
first is c, the number of bits per counter for each mapping ta-
ble entry. The second parameter is a, the number of branch
address bits to use when indexing the VMT. The last pa-
rameter is h, the number of branch history bits to use when
indexing the VMT. These parameters are all illustrated in
Figure 3. The total size of the VMT is thus c ·2a+h+n bits.

The lookup phase of the COLT predictor proceeds in two
steps. The first step performs the individual lookups on each
of the component predictors. Simultaneously, the branch
address and branch history select one of the 2a+h mapping
tables from the VMT (shown as a bold, dashed arrow in
Figure 3). The second step uses the individual predictions
to choose one of the 2n counters of the selected mapping
table (the bold, solid arrow). The most significant bit of the
selected counter determines the final prediction.

The update phase is similar to most other branch predic-
tors. If the actual branch outcome was taken, then we incre-

Branch Address

0 0111

Final
Prediction

P1 P2 P3 Pn

Branch History

1 0 1

1 0 1 0 0 1 1 0 1

10 a

h
c

VMT

Figure 3: The Combined Output Lookup Table hybrid predictor incorporates the outputs of all component predictors to arrive at
an overall final prediction. The Vector of Mapping Tables (VMT) learns mappings from predictor outputs to the overall branch
outcome.

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 16 32 64 128 256

M
is

pr
ed

ic
tio

n
R

at
e

Size (KB)

Quad-Hybrid
alloyed perceptron

COLT

Figure 4: The average SPECint2000 branch misprediction
rates of the Quad-Hybrid, alloyed perceptron, and COLT pre-
dictors for different hardware budgets.

ment the selected counter, up to a maximum value of 2c−1.
If the actual outcome was not-taken, then we decrement the
counter, down to a minimum value of zero. This allows the
COLT to learn arbitrary patterns, such as a branch that is
not-taken only when the exclusive-or of P1 and P2 is true.

5.2. Predictor Accuracy

Using our genetic search, we optimized the set of compo-
nents and the values of the COLT’s parameters for different
hardware budgets. Although genetic algorithms tend to be
an efficient means of searching a large design space, we

have no guarantee that the results are the best possible. The
results of the genetic algorithm are listed in Table 2. The
column labeled “VMT Counters” include the total number
of counters across all 2a+h mapping tables. As the hardware
budget increases, we find that the genetic algorithm chooses
configurations with more components. The common com-
ponents among configurations of all hardware budgets are
an alloyed perceptron predictor and a short history-length
global predictor. In Section 6, we categorize which com-
ponents are useful to the COLT for making predictions and
show how this corresponds to the configurations chosen by
the genetic algorithm.

We simulated the different COLT predictor configura-
tions, and show the results in Figure 4. We also simu-
lated the Quad-Hybrid predictor, which is the best purely
dynamic selection-based hybrid predictor. Furthermore, we
included the performance of the alloyed perceptron which,
as far as we know, is the best published purely dynamic
branch predictor. We did not attempt to further optimize
either the Quad-Hybrid or the alloyed perceptron since a
significant amount of work has already gone into optimiz-
ing these predictors in their original studies. Although this
may affect our results a little, we feel that the comparison is
still fair because we evaluate all of the predictors on a data
set that differs from those used in their respective tuning
phases. At 16KB, the COLT predictor achieves conditional
branch misprediction rates that are over 15% lower than the
Quad-Hybrid; at 32KB, the COLT is over 12% better. As
the hardware budget is increased, the prediction accuracies

 bzip2 eon gcc mcf twolf vpr mean
0

2

4

6

8

10

12

 crafty gap gzip parser vortex

M
is

pr
ed

ic
tio

n
R

at
e

Quad−Hybrid
Alloyed Perceptron
COLT

Figure 5: The misprediction rates for the SPECint2000 bench-
marks for 32KB branch predictors.

of the Quad-Hybrid and alloyed perceptron tend to con-
verge, while the COLT predictor consistently stays ahead
of the pack. Another interpretation of the results is that
a 32KB COLT predictor performs better than the 188KB
Quad-Hybrid and alloyed perceptron predictors. Based on
these results, we claim that our COLT predictors are the
most accurate purely dynamic predictors published to date.

The COLT predictor also performs very well on each
individual benchmark. Figure 5 shows the branch mis-
prediction rates for each of the SPEC2000 integer bench-
marks simulated for predictors at a 32KB budget. For some
benchmarks, the perceptron predictor performs hardly bet-
ter than the Quad-Hybrid predictor. For gap and mcf, the
perceptron actually performs worse than the Quad-Hybrid.
The COLT predictor consistently outperforms the Quad-
Hybrid and perceptron predictors across all benchmarks,
with the exception of gap, where the Quad-Hybrid predic-
tor achieves a marginally lower misprediction rate than the
COLT predictor.

5.3. Predictor Implementation

The COLT predictor along with the component branch pre-
dictors are too large and slow to access in a single clock
cycle, especially with the aggressive clock speeds of cur-
rent and future processors [10]. Jiménez and Lin show how
to pipeline and integrate large branch predictors into super-
scalar processors [14]. Even so, the COLT predictor should
not take too many cycles to perform a prediction. As pre-
sented in Section 5.1, the individual component lookups are
serialized with the mapping table lookup.

The additional delay of choosing one counter from the
indexed mapping table must be considered. Since there are
n components, there are 2n possible combinations of predic-

tions. To select from these 2n entries in the mapping table,
we need an additional O(n) gate delays. We can improve
this delay by taking advantage of the fact that the com-
ponent predictors from Table 2 are of different sizes and
therefore have different lookup latencies. Before any of the
component predictors have returned their predictions, we
have 2n possible entries in the mapping table to consider.
Each time a component returns a prediction, the number
of possible entries is reduced by one half. If we order the
components such that the last input to the selection logic
comes from the slowest component, then the additional de-
lay caused by the mapping table lookup is only a single mul-
tiplexer delay.

The impact of the branch prediction lookup latency can
be further reduced by using other microarchitectural tech-
niques, such as Jiménez and Lin’s overriding predictor [14].
Each cycle, the fetch engine of a superscalar processor uses
the prediction from the small 1-cycle predictor to choose
the next fetch target. The processor also starts a lookup on
the slower but more accurate predictor. Several cycles later,
the large predictor returns its prediction. If the prediction
agrees with the original fast prediction, then no further ac-
tions are taken. If the predictions are different, then instruc-
tions fetched in the mean time are squashed and the fetch is
restarted in the direction specified by the large predictor. If
the large predictor is correct, this may save the many cycles
of a branch misprediction recovery.

We wanted to know how much the additional latency of
a large predictor would impact the overall performance of a
processor. We assume an aggressive clock speed that only
allows about eight levels of logic (gates) per cycle. This
limits the small 1-cycle predictor to a table size of 256 en-
tries. We chose a Smith-style table of saturating counters
since a gshare predictor would require an extra gate delay
to hash the branch address and the global history. Allowing
eight levels of logic per cycle, our 32KB COLT predictor
has a lookup latency of four clock cycles.

We simulated a six-issue superscalar processor loosely
based on the Pentium 4 processor [10] (same caches and
same instruction latencies), although our simulator is based
on the Alpha instruction set architecture. Similar to the Pen-
tium 4, our branch misprediction pipeline has a minimum
latency of 20 cycles.

We simulated four different configurations. The first is a
baseline processor with only the 256-entry bimodal predic-
tor and no overriding predictors. The second configuration
uses the bimodal predictor with a 30KB overriding alloyed
perceptron predictor. The third configuration uses the bi-
modal predictor with a 32KB overriding COLT predictor.
Both overriding predictors have a 4-cycle lookup latency.
The last configuration is an ideal 32KB COLT predictor that
requires only a single cycle to return its prediction. This
helps to illustrate the impact of the branch predictor lookup

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

N
or

m
al

iz
ed

 IP
C

Relative IPC Improvement of Overriding Predictors

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr Harm Mean

1-cycle 2bC
4-cycle OR-alpct

4-cycle OR-COLT
1-cycle COLT

Figure 6: The IPC performance for each benchmark compared
to a baseline processor with a single-cycle 256 entry bimodal
predictor.

latency.
Figure 6 shows the relative IPC rates for each bench-

mark as well as the harmonic mean over all benchmarks.
All rates are normalized to the bimodal-only processor con-
figuration. The overall performance improvement of the
overriding COLT (OR-COLT) over the overriding alloyed
perceptron (OR-alpct) varies by benchmark. For example,
the OR-COLT shows improvements of 4.6-7.0% over the
OR-alpct configuration for eon, gzip and parser. On the
other hand, there is almost no difference for gap and gcc,
and even a slight performance drop for vortex. The reason
why these results do not perfectly correlate with our earlier
misprediction rate results is that the branch misprediction
penalty varies from branch to branch. This emphasizes the
limitations of relying too heavily on branch misprediction
rates alone.

6. Performance Analysis
In this section, we first present some data about the map-
pings learned by the mapping tables in the VMT. The char-
acteristics of the mappings provide evidence that the COLT
predictor does incorporate multiple types of information
when making some of its predictions. This information also
helps to explain the choice of components from our genetic
algorithm. We then explore the design space for the COLT
predictor, examining the performance trade-offs of varying
the parameters of the COLT predictor.

6.1. Explaining the Choice of Components

Branch prediction fusion allows a hybrid predictor to com-
bine the information from several types of branch predic-
tors. In this section, we answer the question of whether the
COLT predictor really makes use of more than one com-
ponent predictor for each branch. Even though the COLT
predictor can conceptually make use of all of the informa-

 bzip2 eon gcc mcf twolf vpr mean

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

F
ra

ct
io

n
of

 C
or

re
ct

 P
re

di
ct

io
ns

 crafty gap gzip parser vortex

Mixed
Multi−Length
Local
Short
Long
Perceptron
Easy

Figure 7: A breakdown of all correct predictions made by the
32KB COLT predictor.

tion, it could be the case that in practice the mapping tables
simply learn mappings that ignore all but one of the compo-
nents.

To answer this question, we take a closer look at the map-
pings stored in the VMT. For each successfully predicted
branch, we look at neighboring entries in the mapping ta-
ble. For example, if the four component predictors P0,P1,P2

and P3 of the 32KB COLT predict 1, 0, 0, 1, respectively
(1 denotes a taken prediction), then the COLT lookup uses
the counter from entry 1001 of the mapping table. We then
compare entries 1001 with 0001. If the two entries yield
different predictions, then it means that the prediction from
P0 is needed to determine the final prediction. On the other
hand, if the two entries yield the same prediction, then we
interpret this as meaning that P0 does not play a role in this
particular mapping. Note that this approach may incorrectly
categorize some branches when the counter in a neighbor-
ing entry has not completed training.

For each simulated branch, we examine the n neighbor-
ing mapping table entries where we invert the outcome of
one of the n component predictors. For each branch, we
then determine which components played a role in success-
fully determining the final prediction. Figure 7 shows how
the correctly predicted branches were determined by the
different components for the 32KB COLT predictor. The
figure provides data for each individual benchmark and the
arithmetic mean across all benchmarks.

The 32KB configuration uses four components, which
gives rise to 16 possible combinations of predictors. The
majority of correct prediction are classified as easy predic-
tions. These are cases where all neighboring entries in the
mapping table provide the correct prediction. The Percep-
tron, Long, Short and Local classifications correspond to
branches where only the alloyed perceptron, the long his-
tory global predictor, the short history global predictor, or

the local history predictor, respectively, played a role in de-
termining the final prediction. These are the branches that a
good selection mechanism should be able to correctly pre-
dict. The next group is what we call Multi-Length predic-
tions, or predictions that use the input from global history
predictors with different global history lengths. We treat the
alloyed perceptron as a global predictor in this context be-
cause it uses a very long global history register. The final
group is called Mixed, which includes branches that require
both global history (possibly of multiple lengths) and local
history.

We first make some observations about the average-
case classification results. The first point is that the Easy
branches comprise the majority of all correct predictions.
This is due to the strong bias exhibited by many branches
which has been exploited by other branch prediction stud-
ies [18, 21]. The data show that the alloyed perceptron cov-
ers the next largest fraction of correctly predicted branches.
This is expected since the alloyed perceptron predictor is
the best stand-alone prediction scheme. The short history
length global predictor is the next most important contrib-
utor. Shorter history predictors have faster training times,
and play an important role when branch behavior changes
quickly. The remaining classifications all contribute in
roughly equal amounts.

Our correct prediction classification scheme provides a
rough ranking of the importance of each component predic-
tor. We would expect this ordering to correspond to the sets
of components chosen by our genetic search. The small-
est configuration in Table 2 already uses three components,
so we re-ran the genetic search algorithm with a hardware
budget of 8KB, which resulted in a two-component hybrid.
The two stand-alone predictors chosen are an alloyed per-
ceptron and a short history length gshare, which correspond
to the two largest classes of correctly predicted branches in
Figure 7. For the 16KB configuration, the additional com-
ponent is a long history length global predictor. At first
sight, this may seem to contradict the data in Figure 7 be-
cause there are relatively few branches determined solely
by the long history length global predictor. However, in-
cluding the long history length global predictor also allows
the COLT predictor to correctly predict the branches in the
Multi-Length classification. Finally, for the 32KB config-
uration, the genetic search includes the local history com-
ponent which allows the predictor to handle the Local and
Mixed branch classes.

As we increase the hardware budget to 128KB and
256KB, the genetic search includes more components of
varying history lengths. Stark et al showed that different
branches in a program are best predicted with different his-
tory lengths, and the results of the genetic search provide
further evidence to back this up [30]. Incorporating mul-
tiple history lengths can also help to distinguish between

aliased branches in a pattern history table. For example, two
distinct branches may map to the same entry in the short
history-length global predictor, but the alloyed perceptron
may provide different predictions in these two cases. Be-
tween these two sources of information, a prediction fusion
mechanism can potentially learn the difference between the
two. Note that the alloyed perceptron need not even give
the correct prediction. If the alloyed perceptron provides
consistently wrong, but different, predictions for these two
branches, the VMT can distinguish between the two cases
and provide the correct final prediction.

Juan et al observed that the optimal history length varies
between benchmarks as well as during the execution of a
single benchmark [16]. The per-benchmark classification
data from Figure 7 corroborate the variance in optimal his-
tory length. For instance, the fraction of correctly predicted
branches in eon classified in the Short group is about the
same as the fraction in the Perceptron group, but the fraction
of correctly predicted branches that fall into the Short class
for gcc is much smaller relative to the fraction of branches
classified as Perceptron. Juan et al proposed dynamic his-
tory length fitting to address the per-benchmark variance of
the optimal history length. Dynamic history length fitting
does not address the fact that the optimal history length also
varies per branch. Stark et al’s variable length path history
approach statically assigns the history length per branch,
and therefore does not address the fact that the optimal his-
tory length changes with time. Our COLT predictor can
handle both of these types of variability in branch behavior,
although the relatively small number of component predic-
tors limits the number of candidate history lengths. This
should not have much affect on overall performance since
the data in [16] show that there is little performance differ-
ence between using the optimal history length and using a
“close-to-optimal” history length.

One disadvantage of prediction fusion is that using a
selective update policy for the component predictors may
not be effective because the inputs from all predictors are
used [23]. In a selection-based approach, components that
are never selected for a branch need not be updated, which
reduces the amount of interference in that component for
other branches. There are some branches that are better pre-
dicted by selection-based techniques, while others that re-
quire prediction fusion. An extension of this research could
involve designing meta-predictors that combine the best at-
tributes of prediction selection and prediction fusion, using
each when appropriate. This would also enable the usage of
selective update policies whenever prediction-fusion is not
used.

6.2. Design Trade-Offs

Besides the choice of components, the COLT predictor has
three primary parameters: the width of the mapping table

counters, the number of entries in the VMT, and the number
of branch history bits used to index the VMT. The config-
urations listed in Table 2 have all been “randomly” discov-
ered by our genetic algorithm. In this section, we observe
how the accuracy of the COLT predictor changes as the con-
figurations depart from those chosen by our genetic search.

Saturating counters are used in several applications, and
the optimal width of the counter also depends on the usage.
Smith found that for tracking the direction of branch out-
comes, two bits are sufficient [27]. Increasing the counter
size beyond two bits yielded rapidly diminishing returns.
Similarly, Evers found that three bits worked the best for the
counters in selection-based hybrid predictors [7]. We sim-
ulated the configurations from Table 2 and varied the width
of the VMT counters from 1 to 6 bits. At one or two bits,
the counters are still too sensitive to transient variations in
the mapping table. Beyond four bits, the incremental im-
provements are negligible. Instead of dedicating storage to
additional counter bits, it is more beneficial to allocate the
area to larger component predictors.

For a fixed hardware budget, there is a trade-off between
how much real estate is dedicated to the component predic-
tors, and how much to the VMT. Not enough area dedicated
to the actual components results in poor individual predic-
tions, which in turn presents less useful information for the
hybrid predictor to work with. If the VMT is too small, then
interference between different mapping tables will result in
poor overall prediction rates. In Figure 8, we plot the per-
formance of the COLT predictors as the size of the VMT is
varied. The original configurations from Table 2 are high-
lighted with dark circles. Each data point to the right of one
of the original configurations represents a doubling of the
VMT size. The VMT size is halved for each point to the
left of an original configuration. The points that represent
the best trade-off between the components and the VMT are
on the convex hull (from below) of the data points. These
configurations all happen to be slightly larger than the cut-
offs for the allotted hardware budgets, and so they were not
selected by the genetic search.

The amount of branch history used to index the VMT
is limited by the number of different mapping tables in the
VMT. For the VMT index, different amounts of branch ad-
dress bits and the global history may be combined. Fig-
ure 9 plots the misprediction rates of the COLT predictors
as we vary the amount of branch history used to index the
VMT. The maximum possible history length varies depend-
ing on the hardware budget because the size of the VMT
also changes. Using more branch history tends to improve
the overall misprediction rate. The amount of improvement
gained by using more branch history varies, but the cost
in hardware to use additional bits of history is negligible.
The genetic search did not always choose the best possi-
ble history length. This is because the branch predictors

 4.3

 4.4

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 16 32 64 128 256 512

M
is

pr
ed

ic
tio

n
R

at
e

Size (KB)

Alpha
Beta

Gamma
Delta

Eta
Original

Figure 8: The COLT misprediction rates as the size of the VMT
is varied, while holding the configurations of the individual
components constant. The solid black circles indicate the
original configurations listed in Table 2. In the legend, “Al-
pha” through “Eta” indicate that the components and all other
parameters are identical to configurations α-η in Table 2.

were tuned on a different input set than in the final evalua-
tion. In any case, the difference in performance between the
chosen history lengths and the best history lengths is very
small. The data from our exploration of the COLT design
space gives us confidence that our genetic algorithm has
performed a reasonable job at optimizing the COLT branch
predictors.

7. Conclusions
In this study, we have proposed prediction fusion as a new
approach to the design of hybrid branch predictors. Our
experiments suggest that there are branches that can only
be predicted if we fuse information from multiple types of
predictors. Our Combined Output Lookup Table (COLT)
predictor achieves lower misprediction rates than any other
published prediction algorithm to date. Using Jiménez and
Lin’s overriding predictor scheme [14], we also demon-
strate that our large, multi-cycle branch predictor can still
be gainfully integrated into very aggressively clocked pro-
cessors.

The Combined Output Lookup Table (COLT) predictor
that we presented is but one possible fusion-based predictor.
There are other possible variations that we do not explore in
this paper, but will briefly mention here. The COLT predic-
tor may be augmented with mechanisms such as agree pre-
diction [29] or selective branch inversion [21]. Our VMT is
indexed with only global branch history, but alloyed branch
history may be beneficial as well [26].

The concept of prediction fusion may be useful outside
the domain of conditional branch prediction. Prediction and
speculation are used in many areas of computer microar-
chitecture, and some of these may benefit from a fusion of

 4.3

 4.4

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 0 2 4 6 8 10

M
is

pr
ed

ic
tio

n
R

at
e

History Width

16KB
32KB
64KB

128KB
256KB

Original

Figure 9: The COLT misprediction rates as the amount of
global branch history used to index the VMT is varied. The
solid black circles indicate the original configurations listed
in Table 2.

prediction techniques. Possible applications are in branch
confidence prediction [12], data value prediction [19], and
memory dependence prediction [24, 25].

Acknowledgments

Karhan E. Akcoglu (Yale University) first brought the
Weighted Majority algorithm to our attention, which was
the starting point for this research. We would also like to
thank Daniel H. Friendly (Yale University) who suggested
valuable improvements to early drafts of this document, and
to the anonymous reviewers who provided several useful
comments to strengthen the paper. Simon Lok (Columbia
University) suggested using the term fusion.

References

[1] Doug Burger and Todd M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical Report 1342, Univer-
sity of Wisconsin, June 1997.

[2] P. Chang and U. Banerjee. Profile-Guided Multi-
Heuristic Branch Prediction. In Proceedings of the
International Conference on Parallel Processing Vol.
I, volume 1, pages 215–218, Urbana-Campaign, IL,
USA, August 1995.

[3] Po-Yung Chang, Eric Hao, and Yale N. Patt. Alter-
native Implementations of Hybrid Branch Predictors.
In Proceedings of the 28th International Symposium
on Microarchitecture, pages 252–257, Ann Arbor, MI,
USA, November 1995.

[4] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale N.
Patt. Branch Classification: a New Mechanism for Im-

proving Branch Predictor Performance. In Proceed-
ings of the 27th International Symposium on Microar-
chitecture, pages 22–31, San Jose, CA, USA, Novem-
ber 1994.

[5] Avinoam N. Eden and Trevor N. Mudge. The YAGS
Branch Prediction Scheme. In Proceedings of the 31st
International Symposium on Microarchitecture, pages
69–77, Dallas, TX, USA, December 1998.

[6] Joel Emer and Nikolas Gloy. A Language for Describ-
ing Predictors and it Application to Automatic Synthe-
sis. In Proceedings of the 24th International Sympo-
sium on Computer Architecture, pages 304–314, Boul-
der, CO, USA, June 1997.

[7] Marius Evers. Improving Branch Prediction by Un-
derstanding Branch Behavior. PhD thesis, University
of Michigan, 2000.

[8] Marius Evers, Po-Yung Chang, and Yale N. Patt. Us-
ing Hybrid Branch Predictors to Improve Branch Pre-
diction Accuracy in the Presence of Context Switches.
In Proceedings of the 23rd International Symposium
on Computer Architecture, pages 3–11, Philadelphia,
PA, USA, May 1996.

[9] Dirk Grunwald, Donald Lindsay, and Benjamin Zorn.
Static Methods in Hybrid Branch Prediction. In Pro-
ceedings of the International Conference on Paral-
lel Architectures and Compilation Techniques, pages
222–229, Paris, France, October 1998.

[10] Glenn Hinton, Dave Sager, Mike Upton, Darrell
Boggs, Doug Karmean, Alan Kyler, and Patrice Rous-
sel. The Microarchitecture of the Pentium 4 Processor.
Intel Technology Journal, Q1 2001.

[11] John H. Holland. Adaptation in Natural Artificial Sys-
tems. University of Michigan Press, Ann Arbor, MI,
1975.

[12] Erik Jacobson, Eric Rotenberg, and James E. Smith.
Assigning Confidence to Conditional Branch Predic-
tions. In Proceedings of the 29th International Sym-
posium on Microarchitecture, pages 142–152, Paris,
France, December 1996.

[13] Daniel Jiménez. Delay-Sensitive Branch Predictors
for Future Technologies. PhD thesis, University of
Texas at Austin, January 2002.

[14] Daniel A. Jiménez, Stephen W. Keckler, and Calvin
Lin. The Impact of Delay on the Design of Branch
Predictors. In Proceedings of the 33rd International
Symposium on Microarchitecture, pages 4–13, Mon-
terey, CA, USA, December 2000.

[15] Daniel A. Jiménez and Calvin Lin. Dynamic Branch
Prediction with Perceptrons. In Proceedings of the 7th
International Symposium on High Performance Com-
puter Architecture, pages 197–206, Monterrey, Mex-
ico, January 2001.

[16] Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dy-
namic History-Length Fitting: A third level of adap-
tivity for branch prediction. In Proceedings of the 25th
International Symposium on Computer Architecture,
pages 156–166, Barcelona, Spain, June 1998.

[17] Eric Larson, Saugata Chatterjee, and Todd Austin.
MASE: A Novel Infrastructure for Detailed Microar-
chitectural Modeling. In Proceedings of the 2001 In-
ternational Symposium on Performance Analysis of
Systems and Software, Tucson, AZ, USA, November
2001.

[18] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N.
Mudge. The Bi-Mode Branch Predictor. In Proceed-
ings of the 30th International Symposium on Microar-
chitecture, pages 4–13, Research Triangle Park, NC,
USA, December 1997.

[19] Mikko H. Lipasti and John Paul Shen. Exceeding
the Dataflow Limit via Value Prediction. In Proceed-
ings of the 29th International Symposium on Microar-
chitecture, pages 226–237, Paris, France, December
1996.

[20] Nick Littlestone and Manfred K. Warmuth. The
Weighted Majority Algorithm. Information and Com-
putation, 108:212–261, 1994.

[21] Srilatha Manne, Artur Klauser, and Dirk Grunwald.
Branch Prediction using Selective Branch Inversion.
In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques,
pages 81–110, Newport Beach, CA, USA, October
1999.

[22] Scott McFarling. Combining Branch Predictors.
TN 36, Compaq Computer Corporation Western Re-
search Laboratory, June 1993.

[23] Pierre Michaud, Andre Seznec, and Richard Uhlig.
Trading Conflict and Capacity Aliasing in Conditional
Branch Predictors. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, pages
292–303, Boulder, CO, USA, June 1997.

[24] Andreas Moshovos, Scott E. Breach, T. N. Vijayku-
mar, and Gurindar S. Sohi. Dynamic Speculation
and Synchronization of Data Dependences. In Pro-
ceedings of the 24th International Symposium on

Computer Architecture, pages 181–193, Boulder, CO,
USA, June 1997.

[25] Andreas Moshovos and Gurindar S. Sohi. Streamlin-
ing Inter-operation Memory Communication via Data
Dependence Prediction. In Proceedings of the 30th
International Symposium on Microarchitecture, pages
235–245, Research Triangle Park, NC, USA, Decem-
ber 1997.

[26] Kevin Skadron, Margaret Martonosi, and Douglas W.
Clark. Alloyed Global and Local Branch History: A
Robust Solution to Wrong-History Mispredictions. In
Proceedings of the International Conference on Paral-
lel Architectures and Compilation Techniques, pages
199–206, Philadelphia, PA, USA, October 2000.

[27] Jim E. Smith. A Study of Branch Prediction Strate-
gies. In Proceedings of the 8th International Sympo-
sium on Computer Architecture, pages 135–148, Min-
neapolis, MN, USA, May 1981.

[28] Eric Sprangle and Doug Carmean. Increasing Proces-
sor Performance by Implementing Deeper Pipelines.
In Proceedings of the 29th International Symposium
on Computer Architecture, pages 25–34, Anchorage,
Alaska, May 2002.

[29] Eric Sprangle, Robert S. Chappell, Mitch Alsup, and
Yale N. Patt. The Agree Predictor: A Mechanism for
Reducing Negative Branch History Interference. In
Proceedings of the 24th International Symposium on
Computer Architecture, pages 284–291, Boulder, CO,
USA, June 1997.

[30] Jared Stark, Marius Evers, and Yale N. Patt. Variable
Length Path Branch Prediction. ACM SIGPLAN No-
tices, 33(11):170–179, 1998.

[31] The Standard Performance Evaluation Corporation.
WWW Site. http://www.spec.org.

[32] Tse-Yu Yeh and Yale N. Patt. Two-Level Adaptive
Branch Prediction. In Proceedings of the 24th Interna-
tional Symposium on Microarchitecture, pages 51–61,
Albuqueque, NM, USA, November 1991.

