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Abstract

Efficient use of machine resources in high-performance
computer systems requires highly optimizing compilers with
sophisticated analyses. Static analysis often fails to iden-
tify frequently executed portions of a program which are the
places where optimizations achieve the greatest benefit.

This paper introduces a novel data flow frequency anal-
ysis framework that computes the frequency with which a
data flow fact will hold at some program point based on
profiling information. Several approaches which approxi-
mate the frequencies based on k-edge profiling have been
presented. However, no feasible approach for obtaining the
accurate solution exists so far. Recently, efficient techniques
for recording whole program paths (WPPs) have been de-
veloped. Our approach for computing data flow frequencies
results in an accurate solution and utilizes WPPs to obtain
the solution in reasonable time. In our experiments we show
that the execution time of WPP-based frequency analysis is
in case of the SPEC benchmark suite only a fraction of the
overall compilation time.

1. Introduction

Program efficiency is a key issue for high performance
systems justifying advanced optimization techniques like
feedback directed compilation. Runtime information gener-
ated by profile runs is provided to the compiler for exploit-
ing the dynamic behavior of a program during the optimiza-
tion process. In this paper we introduce a novel approach
for data flow frequency analysis based on whole program
path profiling.

Data flow frequency analysis computes frequencies of
data flow facts at some program points based on profiling

information. Several approaches have been developed so
far which compute an approximation of data flow frequen-
cies [7, 6, 11]. In [11] probabilities are propagated through
the control-flow graph without taking execution history into
account. In order to get an idea of the precision of this
approach, we proposed an abstract run [6] which accu-
rately computes data flow frequencies. Experiments with
the SPEC benchmark suite show that the deviations between
the approach presented in [11] and the accurate results can
be considerable and improvements are needed. Since the
computational complexity of the abstract run is proportional
to the length of a control flow trace, it is not feasible in prac-
tice. In [7] we presented a probabilistic data flow frame-
work which achieves more accurate results by taking execu-
tion history into account by inspecting intervals of k-edges
instead of treating each edge separately. However, the result
is still an approximation of the best solution.

So far profiling algorithms were based on edge profil-
ing [1] or profiling of intraprocedural, acyclic paths [2]
only. In [2] it has been shown that profiling of acyclic paths
can be done efficiently and takes about twice the time of
edge profiling. An interprocedural extension of acyclic path
profiling [9] results in longer paths, but paths still do not
cross loop boundaries. Recently, it has been shown that
a complete control flow trace, called whole program path
(WPP) [5], can be efficiently recorded by employing the
SEQUITUR compression algorithm [10]. In this way con-
trol flow traces which would be hundreds of MBytes can be
compressed to tens of MBytes (cf. [5]). The feasibility of
whole program traces opens new possibilities for data flow
frequency analysis as well.

In this paper we present a framework for accurately com-
puting data flow frequencies by operating on WPPs [5]. The
feedback directed optimization process consists of three
steps whereby the first two steps are required to generate
WPP files as described in [5]. The data-flow frequency anal-
ysis presented in this paper is performed in step three.
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Figure 1. Example.

1. Instrumentation: An instrumented executable is cre-
ated with additional code for WPP profiling.

2. Instrumented Execution: The instrumented code is ex-
ecuted with a representative input data set for generat-
ing the WPP file.

3. Frequency Analysis: Based on the WPP profile infor-
mation data-flow frequencies are computed.

In the experimental section we demonstrate that this ap-
proach is applicable even for larger applications. Thus for
the first time accurate results can be obtained in reasonable
time. The computational complexity is proportional to the
WPP size instead of the length of the control flow trace.

The paper is organized as follows. Section 2 gives an
overview of our approach and illustrates the required steps
with an example. Section 3 contains the basic notions used
throughout the paper. In Section 4 we develop our approach
step by step. Section 5 presents the results of our experi-
ments with the SPEC benchmark suite. Finally, we discuss
related work in Section 6 and draw our conclusions in Sec-
tion 7.

2. Approach

In this section we give an overview of our approach
and explain the basic ideas with an example. Consider the
control flow graph (CFG) shown in Figure 1(a) with ba-
sic blocks mapped to edges rather than nodes. The CFG
consists of a branching statement inside a loop with two
assignments d1 and d2 on edges 2 → 4 and 3 → 4 , respec-
tively. For sake of simplicity consider the reaching defini-
tions problem [4].

Moreover, let us consider a specific program run πr

which takes 8 times the left branch [1,2,4] and terminates

with the right branch [1,3,4,5]. Hence, we get the frequen-
cies that definition d1 reaches node 2 seven times while def-
inition d2 never reaches node 2, whereas the use of variable
x at edge 4 → 5 is reached by definition d2 only.

Recently, approaches have been developed to compress
the program path and to make a complete control flow trace
feasible [5, 13]. The approach of Larus integrates path pro-
filing [2] and compression algorithm SEQUITUR [10] to re-
duce the size of a complete program trace. In the remainder
of this chapter we will illustrate those techniques with an
example and show how the structure of SEQUITUR can be
used to compute data flow frequencies efficiently.

Path profiling techniques like [2] capture only acyclic
paths which end at loop or procedure boundaries. In our
example three acyclic paths are executed: path a: [s,1,2,4],
path b: [1,2,4], and path c: [1,3,4,5]. Thus program run
πr can be represented by sequence (a b b b b b b b c).
SEQUITUR compresses the sequence online and constructs
a context-free grammar which generates the sequence of
acyclic paths. Note that the non-recursive grammar has
only one production per non-terminal and therefore the only
word generated by the grammar is the sequence. Larus [5]
made slightly modifications to the SEQUITUR algorithm
and named it SEQUITUR(1). The SEQUITUR(1) grammar
for program run πr is denoted by the tuple (NT, T, P, S)
with NT denoting the set of non-terminals, T the set of
terminals, P the set of productions, and S the start sym-
bol. Then we can formally describe the grammar as NT =
{S,A}, T = {a, b, c} and P consists of

S → a A A A b c
A → b b

Larus defines a WPP as a directed acyclic graph (DAG)
representation of the context-free grammar. The WPP for
the example is shown in Figure 1(b). Our algorithm uses



the hierarchical structure and works bottom-up starting with
the terminal symbols a, b, and c. The terminal symbols
represent acyclic paths consisting of CFG nodes and data
flow functions which model the data flow effects of basic
blocks.

For bi-distributive problems (see Section 3) data flow
functions of basic blocks can be composed to one transi-
tion function f which describes the data flow effect of the
whole path. Consider again our running example and path
b: [1,2,4]. The transition function of path b, denoted by f b,
can be composed of f4 ◦f2 ◦f1 with f1, f2, f4 representing
the data flow effects of basic blocks 1, 2, and 4, respectively.
Transition function f is represented as matrix f A. The ma-
trix representation is a necessary prerequisite for computing
the frequency information of control flow nodes.

For control flow nodes frequency information is deter-
mined by frequency matrices which have to be computed
for all symbols in the SEQUITUR grammar and which is
a compressed representation of frequency information for
a grammar symbol. The notion of frequency matrices al-
lows the computation of frequencies for non-terminals by
inspecting the right-hand side of a production only. E.g. for
our running example, the computation of frequency infor-
mation for non-terminal A is based on the frequency matrix
and transition function of symbol b. The composition is
performed by the matrix calculus which is further explained
with the running example below when the algorithm is in-
troduced.

Thus, let us summarize our approach again. Traversing
the WPP bottom-up we determine the transition and fre-
quency matrices for terminals a, b, and c first. If all tran-
sition and frequency matrices of a grammar symbol in the
DAG are available on the outgoing edges, the transition and
frequency matrices of the grammar symbol are computed.
In our example the transition and frequency matrix of non-
terminal A is calculated next followed by non-terminal S.
Once start symbol S of the context-free grammar is reached,
the data flow frequencies of a control flow node are avail-
able.

3. Preliminaries

Programs are represented by directed flow graphs
G= (N,E, s, e) , with node set N and edge set E ⊆
N × N . Edges u → v ∈ E represent basic blocks of in-
structions and model the non-deterministic branching struc-
ture of G. Start node s and end node e are assumed to be
free of incoming and outgoing edges, respectively. A path π
of length k is a finite sequence [u1, u2, . . . , uk] with k ≥ 1,
ui ∈ N for 1 ≤ i ≤ k and for all i ∈ {1, . . . , k − 1},
ui → ui+1 ∈ E. A program run πr is a path, which starts
with node s and ends in node e. The set of all prefixes
(sub-paths) of a path π starting from the first node of π and
ending in node v is denoted by Prefix(π, v).

A monotone data flow analysis problem [4] is a tuple
DFA = (L,∧, F, c,G,M), where L is a bounded semi-
lattice with meet operation ∧, F ⊆ L → L is a monotone
function space associated with L, c ∈ L are the “data flow
facts” associated with start node s, G= (N,E, s, e) is a
control flow graph, and M : E → F is a map from G’s
edges to data flow functions.

We extend function M to map a path π =
[u1, u2, . . . , uk] to a function of F .

M(π) =




M(uk−1 → uk) ◦ . . .

◦M(u1 → u2), if π not empty

i, otherwise

(1)

where i is the identity function. Given a path π, we define
state(π) to be M(π)(c).

For bi-distributive data flow analysis problems semilat-
tice L is a powerset 2D of finite set D = {d1, . . . , dn}
and the meet operator is the set-union operator. Note that
problems with the set-intersection as meet operator are to
be solved by its dual problem [12].

Definition 1 For a bi-distributive problem all transition
functions f ∈ F distribute over union operator (∪) and
intersection operator (∩).

∀X,Y ∈ 2D : f(X ∪ Y ) = f(X) ∪ f(Y ) (2)

∀X,Y ∈ 2D : f(X ∩ Y ) = f(X) ∩ f(Y ) (3)

A transition function f ∈ F of a bi-distributive problem can
be represented by its representation function f r : DΛ →
2DΛ where DΛ = D ∪ {Λ} and Λ is an artificial data flow
fact which holds in a state of a node if the node is reachable
from start node s.

Definition 2 The representation function f r of a transition
function f ∈ F is defined as follows:

f r(Λ) = f(∅) ∪ {Λ}
∀d ∈ D : fr(d) = f({d})− f(∅) (4)

The notions of a representation function f r are given in [11]
and it is an equivalent representation of the representation
relation as introduced in [12].

Lemma 1 Every function f ∈ F is completely determined
by its representation function.

f(X) = [f r(Λ) − {Λ}] ∪
⋃

d∈X

f r(d) (5)

Lemma 2 For all functions f ∈ F of a bi-distributive data-
flow analysis problem following must hold:

∀di �= dj ∈ D : fr(di) ∩ fr(dj) = ∅ (6)

Above lemma essentially says that the maps of the repre-
sentation relation are disjunct.



4. Computation of Dataflow Frequencies

Bi-distributive problems feature certain algebraic prop-
erties for representing data flow functions (i.e. transition
functions) as matrices and states as vectors. This isomor-
phic relation to matrix calculus is heavily exploited in order
to efficiently compute data flow frequencies for a given pro-
gram run.

Vector Representation. An alternative representation of
element X in 2D is a vector �x of numbers in {0, 1} of length
n + 1 where n is the number of data flow facts in D. More
formally, we define a mapping between sub-sets of 2D and
vectors. The function ϕ : 2D → {0, 1}n+1 maps a subset
X ∈ 2D to vector �x

xi =




1, di ∈ X, for all i, 1 ≤ i ≤ n

1, i = n + 1
0, otherwise

(7)

where xi denotes the ith element of vector �x. An vector
element is set to one if the corresponding data flow fact is
in set X otherwise zero. Element xn+1 represents Λ and is
set to one.

Consider all sub-paths(prefixes) π in the program-path
starting from start node s to node v. Recall that state(π)
denotes the state at v after execution along the subpath π.

Definition 3

�yπr(v) =
∑

π∈Prefix(πr,v)

ϕ(state(π)) (8)

The equation above computes the frequencies of data
flow facts and the execution frequency of node v (i.e. the
frequency of symbol Λ). The states of all paths from
start node s to node v are transformed to vectors and then
summed up in order to compute the frequencies of data flow
facts. A sub-path contributes to a frequency of a data flow
fact if the data flow fact is in state(π) of the sub-path π. For
all data flow facts which hold in the state the corresponding
vector elements in ϕ(state(π)) are set to one and the cor-
responding data flow frequencies are incremented by one.
Note that the definition above is computeable, however, the
computation time is polynomial with the length of the pro-
gram path. For long program paths the computation time
can be tremendously slow and better techniques for com-
puting data flow frequencies are required.

Matrix Calculus. A bi-distributive function f ∈ F can
expressed as a (n + 1) × (n + 1) matrix of {0, 1} numbers
as already proposed in [11].

Definition 4 Matrix fA of a transition function f ∈ F is
a (n + 1) × (n + 1) matrix whose elements are given as
follows

aij =
{

1, di ∈ fr(dj)
0, otherwise

(9)

where i, j ∈ {1, . . . , n + 1}.

Note that data flow fact dn+1 is equal to Λ. The ijth element
of the matrix is set to one if element di is in the map of the
representation function f r(dj) – otherwise zero.

Lemma 3 The matrix calculus is an isomorphic represen-
tation of transition functions f ∈ F .

∀X ∈ 2D : ϕ(f(X)) = fA · ϕ(X) (10)

The above lemma essentially says that the following dia-
gram commutes:

2D ϕ−−−−→ {0, 1}n+1

f

	 fA

	
2D ϕ−−−−→ {0, 1}n+1

Example. In Section 1 our example has three bi-
distributive functions. First, function M(2 → 4) = f1

defines d1 and kills d2. Second, function M(3 → 4) = f2

defines d2 and kills d1. Third, the identity function i for all
other mappings.

As described in Section 3, the bi-distributive functions
can be fully determined by their representation functions
(see Lemma 1) that are a compact description of the func-
tions itself.

d i f r
1 (d) fr

2 (d)
d1 {d1} ∅ ∅
d2 {d2} ∅ ∅
Λ {Λ} {Λ, d1} {Λ, d2}

In the next step we transform the representation functions
to matrices as described in Definition 4.

iA =

(
1 0 0
0 1 0
0 0 1

)
, fA

1 =

(
0 0 1
0 0 0
0 0 1

)
, fA

2 =

(
0 0 0
0 0 1
0 0 1

)

Now, f2({d1, d2}) can be transformed to a matrix-vector
multiplication as stated in Lemma 3.

fA
2 · ϕ({d1, d2,Λ}) =

(
0 0 0
0 0 1
0 0 1

)
·
(

1
1
1

)
=

(
0
1
1

)

The result of the matrix-vector multiplication is a vector
(0, 1, 1) which is the representation of data flow set {d2,Λ}
since the second and third element of the vector are set to
one. It is easy to see that for all possible data flow sets of
our example the matrix-vector multiplication is an equiva-
lent representation of the data flow function.



Frequency Matrix. For exploiting the WPP data struc-
ture of a compressed program path we introduce the con-
cept of frequency matrix. In Definition 3 we have a finite
sum of vectors which can be rewritten to a matrix-vector
multiplication based on Lemma 3. This new representation
of the data-flow frequencies allows a composition of non-
terminals in the sequitur grammar.

Definition 5

Fπ(v) =
∑

[u1,...,uk=v]∈Prefix(π,v)

M([u1, . . . , uk])A (11)

A frequency matrix Fπ(v) is defined for a path π and a node
v of the control flow graph. It contains the whole data-flow
frequency information for node v.

Lemma 4
�yπr(v) = Fπr (v)ϕ(c) (12)

The lemma above says that data-flow frequency informa-
tion is the matrix-vector multiplication of the frequency ma-
trix and the data-flow information associated with the start
node s.

Frequency Matrices of SEQUITUR Symbols. Data flow
frequencies are computed based on the compressed pro-
gram path πr represented as SEQUITUR grammar [10]. The
terminals of the grammar correspond to acyclic paths t :
[u1, . . . , uk] where t ∈ T is the terminal and [u1, . . . , uk]
is the node sequence of the acyclic path. For every non-
terminal symbol nt ∈ NT there is only one production
nt → X1X2 . . . Xk where Xi (1 ≤ i ≤ k) is either a non-
terminal or a terminal symbol. The SEQUITUR grammar
does not contain any recursive nonterminals and therefore
it is possible to represent the grammar as a DAG (see Sec-
tion 1).

For computing the frequency information of a node we
exploit the DAG structure of the compressed program path.
In the first phase of the algorithm frequency matrices and
transition functions of terminal symbols are computed. The
transition functions of terminal symbols are used in the sec-
ond phase within which the algorithm computes frequency
matrices for non-terminals by composing frequency matri-
ces and transition functions from the right-hand side of the
production. The composition can only be performed when
all symbols on the right-hand side are already computed. To
meet this criterion the computation of non-terminals must
be in a reverse topological order. For obtaining data-flow
frequencies of a node the frequency matrix of the start sym-
bol S has to be multiplied by the data flow facts associated
with the start node s (cf. Lemma 4).

Lemma 5 The frequency matrices of symbols in a
SEQUITUR grammar are given as follows:

Ft(v) =

{
M([u1, . . . , v])A, v ∈ [u1, . . . , uk]
0n+1, otherwise

(13)

Fnt(v) = FX1(v) + FX2(v)M(X1)A + . . .

+ FXk
(v)M(X1 . . .Xk−1)A (14)

The frequency matrix of terminal symbol t is computed by
the matrix representation of the transition function starting
from node u1 to node v of the control flow graph. If node v
does not occur in the acyclic path of terminal t, then the
frequency matrix is a zero matrix, i.e. node v is not ex-
ecuted in path t. Frequency matrix Fnt of non-terminal
nt is composed out of the symbols on the right-hand side
of the production. The composition is a sum of matrix-
multiplications consisting of frequency matrix of symbol
Xi and the transition function of the path constituted by
X1 . . .Xi−1.

Example. In the following we discuss the computation of
frequency matrices for terminal symbol b and non-terminal
symbol A of control flow node 4 in our running example.
Before computing non-terminal A we need to compute ter-
minal b since terminal b occurs on the right-hand side of
the production in A.

Terminal b represents an acyclic path from node 1 to
node 4 via 2. The mapping function of path [1,2,4] is com-
posed by the function product of the identity function and
f1. Therefore, the frequency matrix Fb(4) is given by the
matrix representation of the transition function of f 1.

Fb(4) = M([1, 2, 4])A = (f1 ◦ i)A =


0 0 1

0 0 0
0 0 1




The frequency matrix of nonterminal A → b b is computed
by following sum:

FA(4) = Fb(4) + Fb(4)M(b)A =


0 0 2

0 0 0
0 0 2




The nonterminal A describes the path b b. Since the sub-
path b is executed twice the frequency matrix of A is the
frequency matrix of b multiplied by 2.

Algorithm. In Figure 2 the algorithm for computing the
data-flow frequency is given. The algorithm computes for
all nodes in the control flow graph the data-flow frequencies
�y(v) as shown in the main procedure. The computation is
divided in two phases. In the first phase the terminals of
the SEQUITUR grammar are computed (shown in procedure



ComputeTerminal). In the second phase non-terminals are
composed in reverse topological order by procedure Com-
puteNonterminal. Finally, data-flow frequency of node v is
determined by the matrix-vector multiplication of the fre-
quency matrix FS(v) and data-flow facts c associated with
the start node s.

In the best case the size of the DAG grows in logarith-
mic order to the length of the program run [5]. The com-
putation of the frequency matrix of a node is proportional
to the size of the DAG (and not longer proportional to the
length of the program run) since for a node v every grammar
symbol is only computed once. We compute the data-flow
frequency information for all nodes separately and there-
fore our algorithm exhibits a computational complexity of
O(|N ||σ|n3) where |σ| is the size of the SEQUITUR gram-
mar, |N | the number of nodes in the control flow graph,
and n the number of data flow facts. The additional factor
(n+1)3 stems from the matrix-multiplication which can be
further reduced to O(n2) if the sparsity of transition func-
tions is exploited.

1: procedure ComputeTerminal(v, t : [u1, . . . , uk])
2: begin
3: M(t)A := M([u1, . . . , uk])A;
4: if v ∈ [u1, . . . , uk] then
5: Ft(v) = M([u1, . . . , v])A;
6: else
7: Ft(v) := 0n+1;
8: endif
9: end
10: procedure ComputeNonterminal(v, nt → X1X2 . . .Xk)
11: begin
12: Fnt(v) := 0n+1;
13: M(nt)A := In+1;
14: for i := 1 to k do
15: Fnt(v) := Fnt(v) + FXi(v)M(nt)A;
16: M(nt)A := M(Xi)AM(nt)A;
17: endfor
18: end
19: procedure Main
20: begin
21: forall v ∈ N do
22: forall t ∈ T do
23: ComputeTerminal(v, t);
24: endfor
25: forall nt ∈ NT in reverse topological order do
26: ComputeNonterminal(v, nt);
27: endfor
28: �yπr(v) = FS(v)ϕ(c);
29: endfor
30: end

Figure 2. Algorithm

5. Experiments

This section describes the experimental results of our
WPP-based data flow frequency analysis framework. As
compilation platform GNU gcc has been used. We extended
GNU gcc with WPP profiling as described in [5]. Genera-
tion of instrumented code is controlled by GNU gcc com-
mand line options. Subsequently, the instrumented code is
executed and a WPP profile is generated which is an addi-
tional input for GNU gcc together with the original source
code (feedback compilation loop). The WPP-based data
flow frequency analysis framework is controlled by GNU
gcc command line options as well. To evaluate our approach
we have chosen SPECint95 as benchmark suite and the
reaching definitions problem as reference data flow prob-
lem. The experiments were conducted on a Sun Ultra Enter-
prise 450 (UltraSPARC-II 296MHz) with 2560MB RAM.

The size of WPP files is displayed in Figure 3 and
ranges from 25 KBytes for benchmark 134.perl up to 17740
KBytes for 099.go. The compile time overhead of our
WPP-based frequency analysis is shown in Figure 4. The
compile time overhead is at most 33% for benchmark
099.go, 15% for benchmark 132.ijpeg, and between 0.2%
and 4% for the remaining benchmarks.

The experiments indicate that the approach is practical
even for larger applications. Figures 3 and 4 show that the
compile time overhead is roughly proportional to the size of
the WPP files.

Our next experiment investigates possibilities for effi-
cient implementation strategies of the frequency module.
Note that usually only a small fraction of nodes are actually
executed and analyzed. Huge portions of code are never
executed and, hence, are not considered in the analysis.
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K
B

yt
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WPP Size of SPECint95 programs in KBytes.

Figure 3. WPP Size.
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Figure 4. Compile Time Overhead.

Figure 5 shows the different kind of code portions with a
stacked bar chart. We distinguish between nodes which are
executed at runtime and contain definitions and, as a con-
sequence, have to be dealt with by the data flow frequency
analysis (executed and analyzed). Next we consider nodes
which are executed at runtime, but do not contain defini-
tions such that those nodes are not dealt with by data flow
frequency analysis (executed and not analyzed). Finally
there are nodes which are not executed and hence not an-
alyzed (not executed and not analyzed). First of all note
that the fraction of nodes which are executed and not an-
alyzed are neglectable: For all benchmarks the black bar
is almost not visible. Except for benchmarks 099.go and
129.compress where the fraction of executed code displayed
by dark bars is dominant, the remaining benchmarks show
the property that only a small fraction of nodes is actually
executed (brighter bars are dominant). Hence, special treat-
ment for non-executed control flow nodes is of paramount
importance to obtain efficiency.

The results suggest that accurate data flow frequency
analysis is feasible for optimizing compilers. In case of
the SPECint95 benchmark suite the overhead of WPP-based
frequency analysis is only a fraction of the overall compile
time.

6. Related Work

Several approaches for data flow frequency analysis have
been proposed. Ramalingam [11] presents a probabilistic
data flow analysis (PDFA) framework which computes the
probability of a data flow fact to hold at some program
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130.li

132.ijp
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134.perl
0 0
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5000 5000
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10000 10000executed and analyzed
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not executed and not analyzed

Node Statistics

Statistics of Nodes in the CFG. A node is either executed and an-
alyzed (definitions exist), or executed and not analyzed (no defini-
tions exist), or not executed.

Figure 5. Node Statistics.

point. This approach is based on exploded control flow
graphs [12] and Markov-chains. The approach yields an ap-
proximate solution which may differ from the accurate val-
ues considerably, since execution history is not taken into
account. In [7] we improved that approach by utilizing ex-
ecution history for calculating the probabilities of the data
flow facts. For calculating the deviations of the probabilis-
tic approaches from the accurate solution we developed an
abstract run [6]. The abstract run accurately calculates the
frequencies, however the computational complexity is pro-
portional to the program path length and thus not feasible in
practice. In the high performance area optimizations based
on data flow frequency analysis are presented in [3, 8].

For recording a complete control flow trace a second ap-
proach has been developed called timestamped whole pro-
gram path (TWPP) [13]. While the compression algorithm
proposed in [5] makes it difficult to access path traces of
a specific function, TWPP utilizes compression techniques
which allow an easy access to path traces on function ba-
sis. The SEQUITUR algorithm is not employed by TWPP.
Recently an algorithm has been proposed which allows to
access sub-paths in a WPP as well [14].

7. Conclusion

In this paper we presented a novel data flow frequency
analysis framework which is based on WPPs and succeeds
in contrast to existing approaches to compute data flow fre-
quencies accurately. The computational complexity of the
algorithm is proportional to the WPP size and as a con-
sequence feasible even for larger applications. Thus there



exists a family of data flow frequency analyses of varying
accuracy and efficiency according to the needs and require-
ments of an user. On the one hand highly efficient approx-
imative approaches as presented in [11, 7] can be used at
the price of reduced accuracy. On the other hand accurate
solutions can be obtained by the approach presented here
at the price of increased computational effort. In future re-
search activities we will try to utilize special properties of
frequency analysis to reduce the computational complexity
further.
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A. Proofs

Proof 1 (Proof of Lemma 1) Based on Definition 2 we can
deduce following equalities:

f({xi}) = f r(xi) ∪ f(∅) (15)

f(∅) = f r(Λ) − {Λ} (16)

First, we prove that for all X ∈ 2D − {∅} Lemma 1 holds
for all separable functions f ∈ F . Let X = {x1, . . . , xk} a
non-empty subset.

f({x1, . . . , xk}) = f({x1}) ∪ . . . f({xk})
= [f r(x1) ∪ f(∅)] ∪ . . .

∪ [fr(xk) ∪ f(∅)]
= [f r(Λ) − {Λ}] ∪⋃d∈X f r(d)

(17)

Second, for empty sets the proof is trivial since the second
operand of the outer union reduces to ∅ and Equation 5
reduces to Equation 16. �

Proof 2 (Proof of Lemma 2) Assume di �= dj ∈ D and f
is a bi-distributive function. Then, we can rewrite f r of the
left-hand side in Equation 6 by function f .

f r(di) ∩ fr(di) = (f({di}) − f(∅))∩
(f({di}) − f(∅))

= (f({di}) ∩ f({di})) − f(∅)
(18)

Datafacts di and dj are not equal and f distributes over ∩.
Therefore, we obtain

(f({di}) ∩ f({di})) − f(∅) = f({di} ∩ {dj}) − f(∅)
= f(∅) − f(∅)
= ∅

(19)
�

Proof 3 (Proof of Lemma 3) In the following we show that
the matrix-vector multiplication of �y = f A�x is an equiva-
lent representation of Y = f(X) where X,Y ∈ D, f ∈ F ,
�x = ϕ(X), and �y = ϕ(Y ). The matrix multiplication can
be represented as n+ 1 dot-products of yi where i is the ith
element of �y.



yi =
∑

1≤j≤n+1

aij�x(j)

=
∑

1≤j≤n+1

[{
1, di ∈ fr(dj)
0, otherwise

]
·






1, dj ∈ X, for 1 ≤ j ≤ n

1, j = n + 1
0, otherwise




=
∑

1≤j≤n+1

[{
1, di ∈ [fr(Λ) ∪ fr(dj)] ∧ dj ∈ X

0, otherwise

]

The last transformation of the equation holds because
all maps of the representation function are disjunct (see
Lemma 2). By reversing vector �y into a set, we obtain fol-
lowing formula

Y = [f r(Λ) − {Λ}] ∪
⋃

d∈X

f r(d)

which is an equivalent representation of transition func-
tion f . �

Proof 4 (Proof of Lemma 4)

�yπr(v) = Fπr(v)ϕ(c)

=


 ∑

π∈Prefix(πr ,v)

M(π)A


ϕ(c)

=
∑

π∈Prefix(πr,v)

ϕ(M(π)(c))

=
∑

π∈Prefix(πr,v)

ϕ(state(π))

�

Proof 5 (Proof of Lemma 5) In the first part of the proof
we show that the definition of frequency matrix holds for
Equation 13 terminal symbol t : [u1, . . . , uk] holds for def-
inition 5.

Ft(v) =
∑

π∈Prefix(πr,v)

M(π)A

=

{
M([u1, . . . , v])A, v ∈ [u1, . . . , uk]
0n+1, otherwise

The sum reduces to one addend since the path of terminal
t is acyclic and it may contain v only once. If v is not in path
[u1, . . . , uk], the frequency sum reduces to zero.

In the following we show that the definition of frequency
matrix holds for non-terminals nt → X1 . . .Xk as well. We
split up the sum into paths which are in the paths of the sym-
bol sequences X1, X1X2, . . . , X1X2 . . . Xk. By splitting
up the sum we can replace the sums by matrices FXi mul-
tiplied by the transition function M(X1)A . . .M(xi−1)A.
The sub-paths of sequences X1X2 . . . Xi are given by
set difference ∆nt(i, v) = Prefix(X1X2 . . .Xi, v) −
Prefix(X1X2 . . .Xi−1, v).

Fnt(v) =
∑

π∈Prefix(X1X2...Xk,v)

M(π)(v)A

=
∑
π∈Prefix(X1,v)

M(π)(v)A +
∑

π∈∆nt(2,v)

M(π)(v)A+

. . . +
∑

π∈∆nt(k,v)

M(π)(v)A

=FX1(v) + FX2(v)M(X1)A+

FXk
(v)M(X1 . . . Xk−1)A

�


