
Quantifying Instruction Criticality

Eric S. Tune Dean M. Tullsen Brad Calder

Department of Computer Science and Engineering
University of California, San Diego
fetune, tullsen, calderg@cs.ucsd.edu

Abstract

Information about instruction criticality can be used to
control the application of micro-architectural resources effi-
ciently. To this end, several groups have proposed methods
to predict critical instructions. This paper presents a frame-
work that allows us to directly measure the criticality of in-
dividual dynamic instructions. This allows us to (1) measure
the accuracy of proposed critical path predictors, (2) quantify
the amount of slack present in non-critical instructions, and
(3) provide a new metric, called tautness, which ranks criti-
cal instructions by their dominance on the critical path. This
research investigates methods for improving critical path pre-
dictor accuracy and studies the distribution of slack and taut-
ness in programs. It shows that instruction criticality changes
dynamically, and that criticality history patterns can be used
to significantly improve predictor accuracy.

1 Introduction

Critical path prediction [18, 7] classifies dynamic instruc-
tions based on their potential to affect performance. Us-
ing information about instruction criticality, limited proces-
sor resources can be used more efficiently. Specifically, value
prediction, instruction steering, instruction scheduling, cache
placement, and several power optimizations have been shown
to benefit from criticality information.

This paper seeks to increase our understanding of the dy-
namic critical path and critical path predictors in several ways.
Previous critical-path predictors produce a binary classifica-
tion of criticality. Our research assigns a value to the crit-
icality of instructions, which denotes the amount of benefit
available from optimizing an instruction. We show the distri-
bution of criticality and the variability of criticality for several
programs.

Second, previous work predicts instruction criticality based
on the program counter. However, our research shows that
criticality is very dynamic for those instructions that actually
are on the critical path at least some of the time; thus, PC-
based predictors will have limited success. This paper exam-
ines whether instruction criticality is more highly correlated to
other index functions which might include information such
as criticality pattern history, branch history, or load history.

In particular, we show that a critical path predictor which uses
the local history pattern of criticality can significantly improve
critical path prediction accuracy.

This paper presents a framework that identifies for each dy-
namic instruction both whether, and to what extent, it is crit-
ical. This technique is computationally intensive, and is not
intended as another dynamic critical path predictor. Rather, it
is a tool for understanding how dynamic instructions differ in
their impact on program runtime.

In using this framework, our contributions are to (1) eval-
uate the quality of predictions for several proposed critical
path predictors, (2) study the correlation between the criti-
cality of dynamic instructions and the corresponding static
instructions, (3) correlate criticality with other events (e.g.,
branch history and load history) in the pipeline, (4) measure
the slack (distance from being critical) present in non-critical
instructions, (5) present a definition of tautness, a quantifi-
cation of the importance of critical instructions with respect
to optimization, and (6) present the distribution of slack and
tautness among instructions.

The rest of the paper is organized as follows: Section 2
summarizes prior work related to identifying critical instruc-
tions and exploiting that information. Section 3 describes
the simulator and the benchmarks used in this study. Sec-
tion 4 describes our approach to quantifying the criticality of
instructions. Section 5 evaluates several different proposed
critical path predictors. Section 6 studies the distribution of
critical and non-critical instructions in programs. Section 7
concludes.

2 Critical Path Prediction and Related Work

Several previous papers have used the notion of instruction
criticality to classify instructions for use in some optimization.
These papers differ in what instructions are targeted (loads
vs. all instructions), how critical instructions are identified or
predicted, and how the criticality information is applied.

Srinivasan et al. study the latency-tolerance of loads
in [16]. In their work, latency tolerance refers to the longest
latency that a load instruction could have before impacting
performance. They find, for many loads, that the latency toler-
ance of a load does not match the level of the memory hierar-
chy where its data resides. Building on this observation, Fisk
and Bahar [8] propose several methods for identifying critical



loads, and propose placing data associated with non-critical
loads in a small buffer to reduce contention in the primary
cache. Srinivasan et al. [15] propose a method for identify-
ing and predicting critical loads, and apply these predictions
to two memory hierarchy optimizations. They study a victim
cache that holds only lines touched by critical loads with the
goal of reducing contention in the victim buffer. They also in-
vestigate a form of prefetching limited to data associated with
critical loads with the aim of reducing bus contention. Racvik
et al. [13] propose a method for identifying non-critical loads,
which they term “non-vital loads.” They propose a level 0
cache which holds only data associated with critical loads.

In Tune, et al., [18], we proposed several heuristic meth-
ods for predicting critical instructions. Certain events in the
processor pipeline can suggest that an instruction is critical.
While a heuristic does not guarantee that an instruction is crit-
ical, heuristic predictors have been shown to be useful in di-
recting a number of micro-architectural optimizations. That
paper examines the performance of the predictors for value
prediction, where the number of value predictions per cycle
is limited, and in which critical instructions are selected for
value prediction in favor of non-critical instructions. It also
examines the use of critical path prediction to steer instruc-
tions in a clustered architecture. Previously, Calder, et al., [2]
proposed value predicting only instructions which were likely
to be on the critical path. Value prediction [11, 9] is an opti-
mization which speculatively removes data dependencies us-
ing predicted results.

Tune, et al [18] also introduces the critical path buffer
(CPB) that allows the use of past criticality history to produce
future predictions. The heuristic predictor of [18] is also used
in Seng, et al. [14], and in a modified form, in [4].

Fields, et al [7] propose a different method for predict-
ing critical instructions. They model program and processor
constraints, including control dependencies, data dependen-
cies, and a limited instruction window, using a directed graph.
Their predictor uses tokens which are passed along the edges
of this virtual graph to determine if an instruction is critical.
They use critical path predictions to steer instructions to clus-
ters and to select instructions for issue. They also study a
value prediction scheme where only critical instructions are
value predicted in order to reduce the number of mispredic-
tions.

Casmira and Grunwald [3] propose a processor with slow
and fast functional units. Instructions with sufficient slack
would execute on slower functional units, thus saving power.
Seng et al. [14] study an architecture which uses a critical path
predictor to assign instructions to either slow or fast functional
units and reduce power. Since non-critical instructions may
be able to tolerate the slower functional units, performance
loss is mitigated. They also study separate instruction queues
for critical and non-critical instructions. They find that crit-
ical instructions (as identified by the predictor) only require
an instruction queue with scalar, in-order issue, whereas non-
critical instructions benefit greatly from an out-of-order in-

Fetch 2 basic blocks/cycle
8 instructions/cycle

Issue 8 instructions/cycle
Commit 8 instructions/cycle
Branch Predictor 8k/8k-entry local-history, 16k-

entry global, 16k-entry choice
8-cycle mispredict penalty

L1 Data Cache 16kB 2-way (8-cycle miss penalty)
L1 Inst Cache 16kB 2-way (8-cycle miss penalty)
L2 Cache 256kB 4-way (20-cycle miss penalty)
L3 Cache 1MB 4-way (100-cycle miss penalty)

Table 1. The processor parameters.
struction queue with multiple issue.

In [6], Fields et al. study the distribution of slack present
in programs. They show how, on a clustered architecture with
multi-speed functional units, they can measure whether in-
structions had sufficient slack to tolerate a slow resource by
sending an instruction to a slow resource, and then measur-
ing whether it became critical, according to the critical path
predictor from [7].

In a different domain, Alexander et. al. [1] study the near-
critical paths of the graphs of communication and computa-
tion in parallel programs. They propose a Maximum Benefit
Metric that quantifies the maximum improvement in runtime
possible by reducing the execution time of a section of code.
The metric we propose quantifies the maximum benefit from
removing the dependencies on a particular instruction.

3 Methodology

Our framework for this research consists of three parts: a
detailed simulator that produces a dependency trace for each
application, a directed graph of the dependencies in the pro-
gram built from this trace, and a program called the resched-
uler which computes the effect on the execution time of the
program as various dependencies are changed. In this section,
we describe the simulator and the set of benchmarks we use
to generate the dependency trace and again to validate the re-
sults of the rescheduler. In the next section, we describe the
rescheduler and the constraint-graph model.

Simulations are performed using a detailed architectural
simulation of an out-of-order processor executing the Alpha
instruction set architecture. Simulations for this research were
performed with the SMTSIM simulator [17], used in single-
thread mode. The simulated processor has a reorder buffer
of 255 instructions. Our simulated processor does not have a
limited instruction queue; it is only limited by the size of the
reorder buffer. The processor can fetch, execute, and commit
up to 8 instructions per cycle. It can fetch up to two non-
contiguous basic blocks per cycle. The memory system mod-
els contention at each level of the memory hierarchy. The
parameters for the processor are summarized in Table 3.

We chose 5 SpecFP2000 and 8 SpecINT2000 benchmarks
for this study. The benchmarks were fast forwarded (emulated
but not simulated) a sufficient distance to bypass initialization
and startup code before measured simulation began. Then, the
cache and branch predictors were warmed up for 50 million
instructions for all benchmarks. Finally, the critical path mea-



Fast
Forward

Benchmark Code Input �10
6

Floating Point
ammp amm ref 2700
applu apl ref 500
equake equ ref 3000
galgel gal ref 2600
swim swi ref 800

Integer
crafty cra ref 1000
eon eok ref (kajiya) 100
gap gap ref 1000
gcc gc2 ref (200) 10
gzip gzp ref (program) 50
parser par ref 320
twolf two ref 2500
vpr vpr ref 1000

Table 2. The benchmarks used in this study.
surements are based on 10 million instruction-long traces after
warmup. The benchmarks used, their inputs, and the number
of instructions fast-forwarded, are shown in Table 2. The ref-
erence input was used for all benchmarks, and where there are
multiple reference inputs, the one used is indicated.

4 Critical and Slackful Instructions

The notion of a critical path comes from operations
research[10, 12], where a project is represented by a directed
acyclic graph where nodes represent milestones and edges
represent jobs to be done, and their dependencies. The ear-
liest finish time of a project is the length of a longest path
through that graph. The difference between the earliest time
at which an activity could be started and the latest time at
which it could be started without delaying the finish time, is
termed the slack of that activity. More precisely it is termed
the “total float”[12] (which Fields et al. [6] refer to as “global
slack”). The edges with no slack are said to lie on the critical
path. Delaying the initiation of any critical activity will delay
the completion of the entire project.

A program executing on a processor can, to a significant
extent, be modeled by such a graph. Many types of de-
pendences and constraints can be modeled with graph edges.
Fields et. al. propose such a model in [7], which is discussed
below. The longest path length of this graph corresponds to
the execution time of the program. They classify instructions
as being “fetch critical”, “execution critical”, or “commit crit-
ical” if delaying the fetch, execution, or committing of the
instruction would delay the overall program’s execution. In
this paper, we are only interested in whether instructions are
“execution critical”.

4.1 Slack and Tautness

This paper focuses on two metrics, slack and tautness, to
quantify instruction criticality. Intuitively, slack represents
how far an instruction is from becoming critical. The slack
of an instruction is the number of cycles that the instruction
can be delayed without increasing the execution time of the
program. Instructions with more than zero cycles of slack are

non-critical.
We propose a new metric, tautness, for distinguishing crit-

ical instructions, which corresponds to how far away an in-
struction is from becoming non-critical. Tautness is a com-
plementary measurement to slack, for instructions which are
critical. We define the tautness for an instruction as the num-
ber of cycles by which execution time is reduced when the
result of that instruction was made available to other instruc-
tions immediately. For all instructions that write a result to
a register, this means making that result available as soon as
the producing instruction is dispatched. For store instructions,
this includes making the value stored available to dependent
loads. For mispredicted branches, this means removing the
misprediction.

Tautness is a useful measurement because it quantifies the
maximum benefit of applying an optimization to an instruc-
tion. It roughly models what might be achieved by value pre-
dicting or speculatively precomputing the result of an instruc-
tion. Notice that this is not information that is available from
identifying and analyzing the longest path through the graph.
For example, an instruction with a latency of 100 cycles would
thus contribute 100 cycles to the length of the longest path, but
removing that instruction from the program graph might ex-
pose another path whose total length is only 1 cycle shorter
than the original path. In that case, the instruction has a taut-
ness of 1 cycle. Tautness accounts for all paths through the
program, not just the longest.

The design of an implementable critical path predictor that
returns a tautness value is left to future work, but such a pre-
dictor would have several benefits. (1) If the critical path pre-
dictor is used to arbitrate a constrained resource, a binary criti-
cal path predictor cannot distinguish between multiple critical
instructions which want to use the resource. (2) Some opti-
mizations, such as speculative precomputation [5, 4], devote
significant resources to target a single instruction. In those
cases, it is not sufficient to target critical instructions, but
rather we would only want to target critical-path instructions
that exceeded a tautness threshold. Speculative precomputa-
tion [5] could use a static critical path predictor that included
tautness (that might look something like our rescheduler), but
dynamic speculative precomputation [4] would require a dy-
namic predictor.

Our critical-path analysis framework allows us to precisely
measure these two properties of instructions (slack and taut-
ness). We first discuss the constraint-graph model of the criti-
cal path that we base our work on, and the algorithms we used
to extend the constraint-graph model and to compute slack
and tautness.

4.2 The Constraint Graph

We start with the graph model presented by Fields, et al.
as a model of the critical path on a microprocessor. Their
model includes not just the data dependencies of instructions,
but also dependencies corresponding to control and some re-



source constraints, such as a finite instruction window. An-
other key feature is that each instruction is represented by sev-
eral nodes, corresponding to different events as the instruction
moves through the pipeline.

In the constraint graph, nodes represent an instruction
reaching a particular pipeline stage in the machine, and edges
represent latencies between those nodes. There are three
nodes in the graph for each instruction, representing the time
when the corresponding instruction is dispatched (d-nodes),
executed (e-nodes), and committed (c-nodes). Those stages
are always connected for a single instruction.

The graph is built from a trace of the execution generated
by a detailed simulator. Edges between different types of
nodes correspond to different hazards in the processor. Each
edge has a weight, in cycles. For example, the following edges
between different instructions are possible:

D! D edges arise between consecutive instructions, and
indicate that instructions are constrained to be fetched serially.
This edge has a weight only if there is a reason the instructions
cannot be fetched the same cycle.

E! D edges indicated a control dependence caused by a
branch misprediction. E ! E edges represent a data depen-
dence between instructions, and the weight is the latency of
the producer.

C! D edges arise between an instruction and an instruc-
tion that is fetched 256 (in this case) instructions later, indi-
cating that with a finite-size (256-instruction) reorder buffer,
the first instruction must retire before the other can enter the
buffer.

More details of the graph can be found in [7].

4.3 The Rescheduler

In [7], Fields et al. used the graph model to determine
what instructions were critical in a particular execution of a
program. In this paper, we use the graph-model to efficiently
determine what would be the impact on the execution time of
the program if each instruction were executed sooner or later.
We use a program which we call the rescheduler to efficiently
determine the effects of changes to a large graph. We also use
the rescheduler to model a processor constraint, limited issue
bandwidth, which cannot be represented in the graph.

The simulator which is used to generate program traces is
described in Section 3. A program trace provides informa-
tion about each dynamic instruction, including fetch delays,
execution latency, execution dependencies, and branch mis-
predictions. Using the rescheduler, which takes this trace as
input, and converts it into the directed graph model of [7], we
can compute the effect of making an instruction complete ex-
ecution earlier or later than it did in the original simulation.
The rescheduler can compute the effect of changing a depen-
dence faster than rerunning a simulation, and thus it is practi-
cal for us to make separate measurement for each instruction
in a program trace containing tens of millions of instructions.

4.4 Rescheduler to Measure Slack and Tautness

We use the rescheduler to compute two metrics for each in-
struction: slack and tautness, as defined earlier. The resched-
uler operates on a moving window of the graph, since the
entire graph would be too large to store efficiently in mem-
ory. The longest path to each node is computed for all nodes,
which are already in topologically sorted order as generated
from the initial simulator trace. Next, to compute the effect
of a change in the graph, the graph is changed as desired,
and the longest path is recomputed for all nodes that follow
the changes. However, it is not necessary to recompute the
longest path for the entire graph each time a node is changed
in order to determine the total effect on the program execution
time. We exploit the fact that no edge spanning more than R

instructions is ever on the longest path, where R is the size
of the instruction window. As the longest path to each node
is recomputed, the change in the time between the original
schedule and the modified schedule is computed. When this
difference,�, is constant for a run of consecutive instructions
of length R, then we can say with certainty that all subsequent
nodes in the graph will also change by �; thus, the runtime
of the program changes by �. The rescheduler is feasible,
even as an offline technique, only because permutations of the
constraint graph always have a localized effect on the entire
graph.

To compute the tautness for an instruction I , the resched-
uler removes any data-dependence edges out of I’s E-node.
This allows instructions that depend on the result of I to exe-
cute independently of I . However, I must still execute eventu-
ally. Thus, if I is “commit critical” – it causes the instruction
window to fill up when a critical instruction is just outside the
window – then I will have a tautness of 0. We chose to de-
fine tautness this way so as to be similar to optimizations such
as value prediction, where the instruction that is the target of
optimization must still execute to validate speculative data.

To compute the slack for an instruction I , we delay the
execution of I by a large number of cycles, and recompute
the longest path for the graph. The difference between the
amount by which I was delayed and the increase in the longest
path is the slack in executing instruction I . For example, if
delaying instruction I by 100 cycles causes the program to
run 98 cycles longer, we conclude that I has 2 cycles of slack,
after which it became critical.

Using this graph-adjustment approach, we compute the
slack and the tautness for each e-node in the graph (every dy-
namic instruction in the program trace.)

We also augmented the longest path computation to adjust
for the effect of a finite number of functional units. For the
execution-node, e, of instruction I , the longest path to node
e would correspond to the cycle at which I executes, if there
was not an issue limit. To model this additional constraint,
after computing the longest path l(e) to a node e, we consult
a table to see how many older instructions were scheduled for
the same cycle. If all functional units are already busy at cy-



cle l(e), then we increase l(e) until a issue slot is found. This
works because we assume that the hardware scheduler gives
preference to older instructions when picking from among all
of the available instructions that are ready to execute. This
is only one of the resource constraints previous graph-based
approaches do not handle well, but it serves as an example of
how others could be handled, such as more specific functional
unit constraints (load-store units, dividers) or a limited size
instruction queue. These limitations are handled by a combi-
nation of the constraint graph and a mechanism for processing
the graph.

In [7], the cycles that an instruction spends ready and wait-
ing in the queue due to functional unit contention are included
in the weight of the EE and EC edges. This is sufficient for de-
termining whether an instruction was critical in the unchanged
graph. When we model the token passing predictor of [7] in
this paper, we include contention cycles in this fashion. But
that is not adequate for our purposes, since we are interested
in the effect of changing the graph, which also changes the
conflict patterns. Therefore, we ignore any contention present
in the program trace, and compute the effect of contention in
the rescheduler.

It should be noted that slack and tautness are not com-
pletely mutually exclusive. Instructions along two paths of the
same length will exhibit no tautness and no slack. But also,
instructions that are not otherwise critical but use an issue slot
that would have gone to a critical instruction, can exhibit both
slack and tautness. This is because either accelerating the in-
struction or delaying the instruction can improve execution
time.

4.5 Validation of the Rescheduler

The rescheduler and the dependence graph together incor-
porate many but not all of the effects modeled by a full sim-
ulation. Both the rescheduler and the simulator compute the
cycle when each instruction is executed, and the total number
of cycles to execute the program. There is a certain amount
of error in the cycle times computed by the rescheduler due to
effects not modeled.

In order to validate using the rescheduler/graph to calculate
slack and tautness, we randomly selected dynamic instruc-
tions with a range of different slack and tautness values, and
then compare the slack or tautness computed by the resched-
uler/graph with their corresponding values from the detailed
simulator. To measure slack and tautness in the simulator, we
ran the simulator with that one dynamic instance of the in-
struction delayed (to measure slack) or with that one instruc-
tion’s result available early (to measure tautness).

The left graph in Figure 1 is a scatter plot showing the
agreement between the slack measured by the simulator and
the slack measured by the rescheduler, for a random selec-
tion of instructions that our technique indicates has slack. The
right graph in Figure 1 shows the same type of scatter plot, but
for tautness.

We validated the rescheduler on a range of benchmarks.
We present the results here for twolf, because those results
fell in the middle of the benchmarks measured — some corre-
lated better, some worse. The line x = y is drawn for conve-
nience. Points that lie on this line represent instructions where
the rescheduler agreed exactly with the results of resimula-
tion. For most instructions, the tautness (or slack) measured
by the rescheduler is at or very close to the result obtained
from a full detailed simulation run. The next section discusses
some of the reasons why the correlation is not perfect.

4.5.1 Sources of Error in the Model

We use the graph/rescheduler to measure slack and tautness
faster than would be possible through resimulation. The con-
straint graph is, however, a simplification of all the interac-
tions that take place in a real processor, and some inaccuracies
will result.

One type of discrepancy occurs because the memory hier-
archy is only modeled indirectly in the graph. Load instruc-
tions have a variable latency. The latency on data-dependence
edges associated with a load instruction are the actual execu-
tion latency of the load during the initial simulation. Once the
weights are assigned, they do not change. In the most com-
mon case, the execution latency of a load instruction is the
same regardless of changes to the graph. That is, in the com-
mon case, the latency of a load is independent of when it, and
other instructions, execute.

However, there are three ways in which memory latencies
can change that are not modeled by the rescheduler. First, the
simulator models conflicts between non-dependent instruc-
tions for cache banks and data buses, but the rescheduler does
not. Second, changes to load ordering can create (or elimi-
nate) new cache conflict misses that the rescheduler will not
recognize. Third, and we found this to be more significant
than the first two, there is an indirect dependence between
loads that access the same cache line. The first load to ac-
cess the line essentially does a full or partial prefetch of the
line for the other loads. If the loads are reordered, a different
load sees the full latency of the access, and the original first
load no longer does. These types of error also affect the slack
measurements of [6].

5 Comparing Critical Path Predictors

Using the framework described in the previous section, we
can know whether delaying each dynamic instruction is safe,
and likewise, whether optimizing each dynamic instruction
is worthwhile. We use this information about instructions to
evaluate the usefulness of several proposed critical path pre-
dictors. We also explore the potential for new types of critical
path predictors.

Critical path prediction differs from other types of predic-
tion, such as branch prediction, in an important respect. In
branch prediction, a predictor table is trained using the out-
comes of each branch, and there is no ambiguity over what



0 50 100 150 200

0

50

100

150

200

Slack measured by resimulation

S
la

ck
 m

ea
su

re
d 

by
 g

ra
ph

 r
es

ch
ed

ul
er

0 50 100

0

20

40

60

80

100

Tautness measured by resimulation

T
au

tn
es

s 
m

ea
su

re
d 

by
 g

ra
ph

 r
es

ch
ed

ul
er

Figure 1. Scatter plot comparing the slack of instructions in the left graph and tautness of instructions
in the right graph as computed by the rescheduler and as determined by re-simulation, for twolf, a
representative benchmark.

this training information is. In critical path prediction, there is
also a predictor table, trained based on the criticality of each
instruction, but identifying whether an instruction was criti-
cal is a large part of the challenge. Thus, the accuracy of a
critical path prediction depends on both the accuracy of the
training stream (identifying whether an instruction was crit-
ical after it executed) and the accuracy of predictions (how
training information is used by the prediction table to predict
future criticality). We study both the identification accuracy
of different proposed methods, and the prediction accuracy
when a perfect identification method is coupled with different
prediction tables.

5.1 Training Accuracy

This section examines the accuracy of the training mech-
anism used by several critical path predictors. We define an
instruction as being non-critical if it has more than 0 cycles of
slack, as measured by the rescheduler, or critical otherwise.
Figure 2 shows the breakdown of correct and incorrect identi-
fication for various methods of identifying critical instructions
across the 13 benchmarks. Each group of bars represents a
benchmark. Within each group, individual bars represent dif-
ferent methods of identifying critical instructions. A letter at
the top of each bar indicates the identification method. In this
figure, QOld and ALOld represent critical path predictors from
[18] using the QOld heuristic and the ALOld heuristic, respec-
tively. QOld identifies instructions that become the oldest in
the instruction queue, and ALOld identifies instructions that
become the oldest in the active list (oldest non-retired). Token
is the critical path predictor from [7], which plants a token
at an instruction, and observes whether the token stays alive,
propagating between instructions along last-arriving depen-
dence edges. We modeled a token-passing predictor which
could train 8 instructions at a time, with a 500-instruction
training distance. NonVital is the load-criticality predictor
from [13]. The NonVital predictor marks a load as “vital”

if its result is used immediately.
The number of identifications made by each method varies.

Thus, the ratio of the number instructions which are actually
critical versus non-critical need not be the same for all bars
in a group. The Heuristic methods (Q,A) make an identifi-
cation for every instruction. The Token-passing predictor (T)
only identifies a sample set of all instructions. The non-vital
predictor only predicts loads. The exact fraction of identified
instructions that are critical depends on the implementation of
the predictor. For instance, in ammp, nearly half of all load in-
structions are critical, and in galgel, very few load instruc-
tions are critical, hence the fraction of critical instructions is
clearly different for the NonVital bar as compared to the other
predictors.

Figure 2 shows that the token-passing method does very
well overall. It does particularly well at correctly identify-
ing instructions that are actually non-critical – the heuristic
techniques tend to be much more liberal in identifying poten-
tial critical instructions (intentionally so, hoping to capture in-
structions that are only occasionally critical [18]). For many
optimizations, however, the most important category can be
the mis-identification of critical instructions. For example, in
a processor with clustered functional units, mistakenly send-
ing a critical instruction to a different cluster from other crit-
ical instructions will have a direct cost: increased execution
time due to bypass penalty. But mistakenly sending a non-
critical instruction to the wrong cluster only has an indirect
cost: possibly causing contention. The token-passer also does
well with this criteria overall, but in several cases does not
have the highest coverage of critical instructions.

The Non-Vital predictor (V) was proposed only as a predic-
tor for Load instructions. The results show that the Non-Vital
Loads technique does especially well at identifying critical
loads, but it does poorly at correctly identifying non-critical
loads.

Note that the Token-passing predictor rarely identifies non-
critical instructions as critical, because its prediction is based



amm apl cra eok equ gal gap gc2 gzp par swi two vpr

%
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0

20

40

60

80

100
Q Q Q Q Q Q Q Q Q Q Q Q QA A A A A A A A A A A A AT T T T T T T T T T T T TV V V V V V V V V V V V V

Non−Critical 
 Correct Ident.

Non−Critical 
 False Ident.

Critical 
 False Ident. 

Critical 
 Correct Ident.

Q QOld

A ALOld

T Token

V NonVital

Figure 2. Correct and Incorrect Identification for 4 Different Criticality-Identification Mechanisms.

>99% >95% >90% >50% >10% >1% >0%
amm 3.38 3.64 3.64 6.59 13.69 18.63 20.36

apl 6.66 6.66 6.67 7.39 15.83 19.30 22.49
cra 0.67 0.72 0.78 2.20 11.86 25.70 34.68
eok 0.45 0.51 0.58 1.15 6.58 12.03 18.02
equ 0.00 0.00 0.00 0.00 0.85 2.55 3.77
gal 0.00 2.18 4.37 4.37 4.80 16.16 38.86
gap 0.22 0.48 0.63 2.82 14.48 23.35 30.87
gc2 2.59 2.62 2.65 3.79 15.61 29.96 34.49
gzp 3.34 3.43 4.34 6.90 21.18 27.13 38.59
par 3.29 3.46 3.70 7.27 20.95 32.56 37.15
swi 0.00 0.00 0.00 0.00 11.60 19.89 25.97
two 0.40 0.40 1.03 4.53 20.79 35.31 51.93
vpr 0.14 0.14 0.14 0.55 6.57 10.82 17.36

AVG 1.48 1.71 2.07 3.41 12.59 21.23 29.52

Table 3. Criticality Bias of Static Instructions.
on a graph the same graph we use to measure criticality. But
because we define criticality based on the slack measured us-
ing the rescheduler, which incorporates an additional proces-
sor constraint (limited issue width), such mispredictions are
possible.

5.2 Criticality Bias of Static Instructions

Given a means to accurately identify which instructions are
critical, the critical path predictor then uses that information
to produce a prediction for future instructions.

If criticality is highly biased for individual static instruc-
tions, a simple predictor, even a static predictor, would be
sufficient. This section examines the criticality bias of static
instructions for a particular processor configuration. The re-
sults are shown in Table 3. In that table, a column labeled
x% shows, for each benchmark, the fraction of static instruc-
tions for which more than x% of its dynamic instances were
critical.

Looking at the last column of the table, between 4% and
52%, and on average 30% of static instructions are critical at
least once. Thus, on average, 70% of static instructions can
safely be ruled out as not being critical. This suggests that
techniques that need to find a large number of, but not neces-
sarily all, instructions with slack may not require a complex
predictor.

Among static instructions which are at any point in time

Benchmark P > 0:9 P > 0:5 P > 0:1 P > 0:01

amm 0.35 1.91 12.74 18.20
apl 7.73 8.83 17.05 19.61
cra 0.53 1.50 15.05 28.53
eok 0.10 0.79 7.44 13.32
equ 0.00 0.00 1.60 2.55
gal 0.00 0.00 0.44 19.21
gap 0.78 2.88 16.65 24.93
gc2 2.48 3.78 18.80 32.03
gzp 4.30 4.90 22.27 29.08
par 2.82 5.00 23.82 34.03
swi 0.00 0.00 14.92 21.55
two 0.00 1.60 26.25 39.21
vpr 0.08 1.40 8.00 11.77

AVG 1.57 2.56 14.36 22.99

Table 4. Fraction of Static Instructions which
Change Criticality with Different Frequency.

critical, those instructions tend to change their criticality of-
ten. For three of the benchmarks (equake, swim, and vpr),
less than 1% of static instructions are critical even half of the
times they are executed. That is, there are virtually no “stati-
cally critical” instructions for those benchmarks.

If we want to try to predict the critical path of the pro-
gram with high accuracy, then a purely PC based approach
will not be sufficient. According to the table, on average over
all benchmarks, 33% of static instructions are critical at least
once (column labeled 0%) and 12% of static instructions are
critical more than 50% of the time. Thus, 21% are critical, but
at a frequency less than or equal to 50%.

Table 4 shows the distribution of static instructions accord-
ing to how often they change criticality (from critical on one
dynamic instance to non-critical the next, or vice versa.) In
this table, a column labeled P > x, with value y for some
benchmark, means that y% of static instructions have a prob-
ability greater than x of changing their criticality between any
two subsequent instances. For example, a static instruction
that was critical 50 times in a row, and then non-critical 50
times in a row, and so on, would have P = 2%. A differ-
ent static instruction that alternates between critical and non-
critical every time would have P = 100%.

This table shows that on average 23% of static instructions
tend to change their criticality more often than every 100 in-
stances. Thus, a predictor which identifies the criticality of



a static instruction, say, every 10 instances, would be able to
predict 75% of static instructions with reasonable accuracy.
This bodes fairly well for predictors like the token-passing
predictor that produce intermittent training information. How-
ever, predictors that produce more frequent training informa-
tion, like the Heuristic predictor, may still be able to use that
to an advantage. 14% of static instructions overall (and up to
about 25% for some benchmarks) change criticality at every
10 invocations or more. For example, consider a load instruc-
tion that has a cache miss every 8th time, because it reads 8
sequential words from a cache line. That instruction or its de-
pendents might be non-critical 7 times and then critical 1 time,
and repeating in that pattern. Predicting criticality based on a
saturating counter would not be effective for this instruction.
The next section examines the possibility of identifying pat-
terns and correlations which can increase the predictability of
the dynamically critical instructions.

5.3 Prediction

Previous work in critical path prediction used a PC-indexed
prediction table with biased counters. This means that the ad-
dress of a an instruction is used to index into a table of saturat-
ing counters, like a branch predictor, and that the counters are
incremented by a large amount when an instruction is identi-
fied as critical, and decremented by 1 when an instruction is
found to be non-critical. Both the token-passing predictor and
the heuristic predictor used such a prediction table. We ex-
amine the accuracy that can be obtained with different types
of prediction tables. In this section, we are less concerned
with the practicality of implementing a prediction table, and
more interested in the limits of how well critical instructions
can be predicted. Therefore, we use Oracle training for all the
predictors in this section.

Figure 3 shows the accuracy of different types of prediction
tables. Each group of bars represents a benchmark. Within
each group, individual bars represent different predictors. A
code at the top of each bar indicates the predictor. The predic-
tors are as follows: One-Level (1 in the figure) – A one-level
predictor consisting of a PC indexed table of 2-bit saturating
counters. The table is unaliased. 1-Level, Biased Counter
(X) – A one-level predictor consisting of a PC indexed table
of 5-bit saturating counters. The biased counter increments
by 8 when an instruction is identified as critical, and decre-
ments by 1 otherwise. Two-Level (2) – A two-level predictor,
PC indexed table of 8-bit local histories (unaliased). Local
history is used to index into a table of 256 2-bit saturating
counters. Branch History (B) – A 1-level predictor, indexed
by a concatenation of PC and 8 bits of branch-direction his-
tory, unaliased. Branch Miss History (M) – A 1-level pre-
dictor, indexed by a concatenation of PC and 8 bits of branch-
misprediction history, unaliased. Load Miss History (L) –
A 1-level predictor, indexed by a concatenation of PC and 8
bits of load-miss history, unaliased. All predictors use oracle
training. Note that there are two subplots with different ver-
tical scales, to show detail on those benchmarks that have a

small percentage of critical instructions.
Each of the history-based predictors (BranchHistory,

BranchMissHistory, LoadMissHistory) use 8 bits of history
regarding the last 8 branch or load instructions. BranchHis-
tory refers to the direction of previous branches. Branch-
MissHistory refers to whether previous branches were mis-
predicted. LoadMissHistory refers to whether previous loads
were cache misses. Previous means older instructions, in pro-
gram order. Information about the current instruction is not
incorporated in the history.

Branch history would help prediction if the criticality of an
instruction is highly correlated with the control flow path the
program took to get to it. Branch history (B) is sometimes
better than a simple PC-indexed prediction (1), and some-
times worse. The criticality of instructions can be affected
by nearby cache misses and branch mispredictions, but these
patterns did little to improve prediction accuracy except in the
isolated case of swim. Note that miss history and mispredict
history are hard to gather in real time, but our focus was on
understanding the causes of varying criticality.

These results reinforce the findings in the previous sub-
section; Most static instructions are always not-critical, and
so all of the predictors are able to identify nearly all non-
critical instructions. The critical path runs through a small
set of static instructions, but which of those are critical can
vary frequently. Thus, if we are willing to tolerate predicting
some non-critical instructions as critical (accept low accuracy
to get high coverage of critical instructions), then the best ap-
proach is to predict as critical any static instruction that was
recently critical. This is highlighted by the ”Critical/Correctly
Identified” bar for ”Perfect-OneLev-Biased”, which is always
very tall. Thus the approach taken by two critical path predic-
tors [18, 7] of biasing the counters (by incrementing by a large
amount for critical, and decrementing by a small amount for
non-critical) is effective.

However, if we are not willing to sacrifice accuracy, the
two-level predictor had significantly higher coverage of crit-
ical instructions among the those that were not biased (few
non-critical instructions called critical). In several cases, it
achieves twice the coverage of the PC-based 1-level predictor.
This indicates that many instructions do indeed follow a pre-
dictable pattern of criticality that can be identified by a local
history predictor.

However, the two-level predictor would not be compati-
ble with a sampling-based identification method, such as the
token-passing predictor. Recall that the token-passing method
does not produce training information for every instruction,
but has a better training accuracy than the heuristic methods,
which do sample every instruction. Although tokens can be
placed in a controlled fashion to profile several consecutive in-
stances of a static instruction, this would need to be continued
indefinitely to maintain the local history for an instruction.

This section has demonstrated that predictors that predict
based on PC and are slow to change predictions have a diffi-
cult time predicting critical instructions accurately, due to the



apl cra equ swi

%
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0

2

4

6

8

10
1 1 1 1X X X X2 2 2 2B B B BM M M ML L L L

amm eok gal gap gc2 gzp par two vpr
%

 o
f D

yn
am

ic
 In

st
ru

ct
io

ns
0

5

10

15

20

25

30

35

40
1 1 1 1 1 1 1 1 1X X X X X X X X X2 2 2 2 2 2 2 2 2B B B B B B B B BM M M M M M M M ML L L L L L L L L

Non−Critical 
 Correct Ident.

Non−Critical 
 False Ident.

Critical 
 False Ident. 

Critical 
 Correct Ident.

1 1−Level

X 1−Level
Biased

2 2−Level

B Branch
History

M Branch Miss
History

L Load Miss
History

Figure 3. Correct and Incorrect Predictions for Different Prediction Tables, using Oracle Criticality ID.

highly dynamic behavior of those instructions. It has shown
the potential for a pattern-based predictor to be more effec-
tive. The patterns by which instructions change their critical-
ity warrants further study. One likely source of predictable
patterns of criticality could stem from loads that access mem-
ory sequentially, missing for the first access to a line, and then
hitting on subsequent accesses to that line.

6 Distribution of Critical Instructions

Slack and tautness are two metrics that provide more fine-
grained information about criticality than a binary prediction
(critical vs. non-critical). This section confirms this by show-
ing slack and tautness are both highly varied in the set of pro-
grams we are considering.

The graphs in Figure 4 show the cumulative distribution of
tautness values for dynamic instructions in the floating-point
and integer benchmarks. A point on the curve shows what per-
centage of instructions have at least a certain number of cycles
of tautness. Where a curve intersects the y-axis indicates the
percentage of dynamic instructions that are critical.

Most integer benchmarks (the graph on the right) have
fewer than 2.5% of instructions with tautness of more than
10 cycles. The benchmarks twolf and parser stand out as ex-
ceptions. Three of the 5 floating-point benchmarks have fewer
than 1% of instructions with tautness of more than 10 cycles.
We attribute the reduced amount of tautness in some float-
ing point programs in part to loop unrolling and instruction
scheduling, which will increase the number of similar-length,
independent dependence chains, so that optimizing just one
instruction (as tautness measures) will leave several other
equally long, parallel chains which become critical. Since we
define tautness in terms of making the result of an instruction
available as soon as it is dispatched, rather than just reducing
its latency, it is possible for an instruction to have a tautness
much greater than the longest latency of any instruction in our
simulator (about 360 cycles). This is most evident in ammp,
which has a significant number of instructions with a tautness
greater than 2000 cycles. Several of the integer programs also

have a significant number of instructions with hundreds of cy-
cles of tautness, as indicated by the long tails on the curves.

Figure 5 show histograms of the amount of slack in dy-
namic instructions. Notice that, particularly for the integer
programs, there is a correlation between programs with high
tautness values and high slack values. The average number
of instructions with slack is much higher than the number of
critical instructions, which was one of the original motivations
for critical path prediction.

7 Conclusions

This paper describes a framework for measuring the degree
of criticality (tautness) or non-criticality (slack) of each in-
struction in a program. Tautness is a new metric we introduce
to measure the degree of criticality of a dynamic instruction.
We evaluate the accuracy of several critical path predictors,
both in terms of the accuracy of the training stream and the
prediction mechanism, as well as demonstrate the potential
for new prediction techniques. We find that there are more
slackful instructions than taut instructions, and examine this
distribution of slack and tautness in programs.

We found that a majority of static instructions are never
critical, but among those static instructions that are ever criti-
cal, criticality varied frequently – very few static instructions
are always critical; about 1.5% on average over 13 bench-
marks. Thus, predicting exactly the dynamic instances of
these static instructions that are critical is difficult, but im-
portant for a highly accurate predictor. We show that new
prediction techniques that recognize patterns in these critical
instructions have the potential to significantly increase the ac-
curacy of critical path predictors.

This work suggests several important future directions to
improve the effectiveness of critical path prediction. It shows
that critical path predictors must be able to identify patterns
of criticality to achieve high coverage and accuracy. It also
demonstrates the need for predictors that quantify criticality
(or slack) rather than just produce a binary prediction.



Cycles of Tautness
0 10 20 30 40 50

Pe
rc

en
t o

f D
yn

am
ic 

In
st

ru
ct

io
ns

wi
th

 a
t L

ea
st

 x
 C

yc
le

s 
Ta

ut
ne

ss

0

5

10

15

20

amm

apl

equ

gal

swi

Cycles of Tautness
0 10 20 30 40 50

Pe
rc

en
t o

f D
yn

am
ic 

In
st

ru
ct

io
ns

wi
th

 a
t L

ea
st

 x
 C

yc
le

s 
Ta

ut
ne

ss

0

5

10

15

20

cra

eok

gap

gc2

gzp

par

two

vpr

Figure 4. Cumulative Distribution (decreasing) of the Fraction of Dynamic Instructions with Tautness.

Cycles of Slack
0 50 100 150 200 250 300 350 400

Pe
rc

en
t o

f D
yn

am
ic 

In
st

ru
ct

io
ns

wi
th

 a
t L

ea
st

 x
 C

yc
le

s 
Sl

ac
k

0

20

40

60

80

100

amm

apl

equ

gal

swi

Cycles of Slack
0 100 200 300 400 500 600 700 800

Pe
rc

en
t o

f D
yn

am
ic 

In
st

ru
ct

io
ns

wi
th

 a
t L

ea
st

 x
 C

yc
le

s 
Sl

ac
k

0

20

40

60

80

100

cra

eok

gap

gc2

gzp

par

two

vpr

Figure 5. Cumulative Distribution (decreasing) of the Fraction of Dynamic Instructions with Slack.

We would like to thank the anonymous reviewers for their
comments. This research was funded by NSF grant No. CCR-
0105743 and SRC contract 2001-HJ-897.

References

[1] C. Alexander, D. Reese, and J. Harden. Near–critical path anal-
ysis of program activity graphs. In Proceedings of the 2nd In-
ternational Workshop on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 308–317.
IEEE Computer Society, Feb. 1994.

[2] B. Calder, G. Reinman, and D. M. Tullsen. Selective value pre-
diction. In 26th Annual International Symposium on Computer
Architecture, pages 64–75, May 1999.

[3] J. Casmira and D. Grunwald. Dynamic instruction scheduling
slack. In 2000 KoolChips workshop, Dec. 2000.

[4] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic
speculative precomputation. In 34th Annual International Sym-
posium on Microarchitecture, Dec. 2001.

[5] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative precomputation: Long-
range prefetching of delinquent loads. In 28th International
Symposium on Computer Architecture, July 2001.

[6] B. A. Fields, R. Bodı́k, and M. Hill. Slack: Maximizing per-
formance under technological constraints. In To appear in the
Proceedings of the 29th International Symposium on Computer
Architecture, 2002.

[7] B. A. Fields, S. Rubin, and R. Bodı́k. Focusing processor pri-
orities via critical-path prediction. In Proceedings of the 28th
International Symposium on Computer Architecture, 2001.

[8] B. R. Fisk and R. I. Bahar. The non-critical buffer: Using load
latency tolerance to improve data cache efficiency. In IEEE In-

ternational Conference on Computer Design, Austin, TX, Oct.
1999.

[9] F. Gabbay and A. Mendelson. Speculative execution based on
value prediction. EE Department TR 1080, Technion - Israel
Institue of Technology, Nov. 1996.

[10] A. Kaufmann and G. Desbazeille. The Critical Path Method.
Gordon and Breach, 1969.

[11] M. Lipasti and J. Shen. Exceeding the dataflow limit via value
prediction. In Proceedings of the 29th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, December 1996.

[12] R. L. Martino. Critical Path Networks. MDI Publications,
1967.

[13] R. Rakvic, B. Black, D. Limaye, and J. P. Shen. Non-vital
loads. In Proceedings of the 8th International Symposium
on High-Performance Computer Architecture, pages 165–174,
Feb. 2002.

[14] J. Seng, E. Tune, and D. Tullsen. Reducing power with dy-
namic critical path information. In Proceedings of the 34th
International Symposium on Microarchitecture, Dec. 2001.

[15] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson. Locality vs.
criticality. In Proceedings of the 28th International Symposium
on Computer Architecture, July 2001.

[16] S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in
dynamically scheduled processors. Journal of Instruction Level
Parallelism, (1):1–24, 1999.

[17] D. M. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[18] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic
prediction of critical path instructions. In Proceedings of the
Seventh International Symposium on High-Performance Com-
puter Architecture, Feb. 2001.


