
Using the Compiler to Improve Cache Replacement Decisions

Zhenlin Wangy Kathryn S. McKinleyx Arnold L. Rosenbergy Charles C. Weemsy

y Department of Computer Science
University of Massachusetts, Amherst

x Department of Computer Science
University of Texas, Austin

ABSTRACT
Memory performance is increasingly determining microprocessor
performance and technology trends are exacerbating this problem.
Most architectures use set-associative caches with LRU replace-
ment policies to combine fast access with relatively low miss rates.
To improve replacement decisions in set-associative caches, we de-
velop a new set of compiler algorithms that predict which data will
and will not be reused and provide these hints to the architecture.
We prove that the hints either match or improve hit rates over LRU.
We describe a practical one-bit cache-line tag implementation of
our algorithm, called evict-me. On a cache replacement, the archi-
tecture will replace a line for which the evict-me bit is set, or if
none is set, it will use the LRU bits. We implement our compiler
analysis and its output in the Scale compiler. On a variety of sci-
entific programs, using the evict-me algorithm in both the level 1
and 2 caches improves simulated cycle times by up to 34% over the
LRU policy by increasing hit rates. In addition, a combination of
simple hardware prefetching and evict-me works together to further
improve performance.

1. Introduction
Microprocessor speeds have been steadily improving by about 55%
per year since 1987. Meanwhile, memory access latencies have
been improving only by 7% per year [12]. Cache hierarchies at-
tempt to bridge this gap, and researchers have studied them in-
tensely since their invention. To attain fast (1 or 2 cycles) cache ac-
cess times, current microarchitectures have direct-mapped or low, 2
or 4-way, set-associative organizations [12, 13]. This choice trades
off lower cache hit rates for higher clock rates to achieve better
total performance. In set-associative caches, the architecture typ-
ically chooses to evict the least-recently-used (LRU) line on a re-
placement. LRU uses history, assuming that it should keep the most
recently accessed data in the cache and evict the least recently ac-
cessed data. This organization and replacement policy does not
always use cache memory effectively; i.e., even though the cache
has sufficient capacity to retain data that will be reused in the fu-
ture, LRU does not retain it [3, 6, 23]. This paper describes novel
compiler and architecture mechanisms that use compiler prediction
of future accesses to improve cache replacement decisions directly.

Consider the simple example in Figure 1. Notice that array B is
accessed in nest 1 but not in nest 2. Whenever there is a cache miss
in the first nest, we prefer to evict an element of array B. How-
ever, LRU ranks items from least to most recently used, i.e., A, B,
C. Assuming that the cache size is a little bigger than 2*N, LRU
will evict part of A even in a fully associative cache. A better re-
placement algorithm keeps both A and C and reuses them in nest 2.
An optimal replacement algorithm however must know all future
accesses, and hence is clearly infeasible [5, 32].

SUBROUTINE TEST(N)
INTEGER A(N), B(N), C(N)

DO N1 I = 1,N
C(I) = A(I)+B(I)

ENDDO

DO N2 I = 1:N
A(I) = C(I) * 5

ENDDO
END

Figure 1: A simple example

In this paper, we develop a new compiler mechanism that guides
cache replacements by selectively predicting when data will or will
not be reused. We develop a comparative model that uses depen-
dence and array section analysis to determine static locality patterns
in a program. We first prove that our model matches or improves
hit rates when compared to LRU. We then present an implementa-
tion that uses a single tag bit called the evict-me bit. On a miss, the
architecture replaces a line with this bit set. For example in Fig-
ure 1, we mark the evict-me bit for B on its load, and then evict it
on a replacement to its cache set.

Our compiler algorithm aggressively marks data as evict-me if the
data volume accessed between its reuse is (or it predicts the reuse
is) greater than twice the cache size. The compiler can mark data
aggressively, since if all the data fits in the cache, there will be no
replacements. By applying the evict-me bit to both level 1 and level
2 caches, we observe up to 21% simulated performance improve-
ments for current technology on a selection of scientific bench-
marks and 34% for a technology prediction for 5 years from now
[3]. On average, we reduce simulated execution time from 4.89%
to 15.62% depending on the cache configuration.

Prefetching should be complementary to evict-me, since when ef-
fective, it fetches data that will be used in the future. We report
results from a preliminary exploration of the interaction of evict-
me with a simple hardware prefetching mechanism. We find that
evict-me usually outperforms simple prefetching. In combination,
evict-me helps alleviate cache pollution introduced by hardware
prefetching and further improves cache performance. This paper
thus introduces a new mechanism that enhances cache replacement
decisions directly and we automate its use in a compiler.

This paper is organized as follows. Section 2 discusses related
work. Section 3 presents potential hardware implementations. Sec-
tion 4 introduces locality analysis and a new concept, reuse level.
It also describes techniques for generating reuse levels at compile
time. Section 5 presents an algorithm based on reuse levels and
proves that it is at least as good as LRU and has the potential to

improve overall hit rates. We then describe an algorithm that uses
a 1-bit tag for each cache line. Section 6 and Section 7 discuss our
experimental methods and simulation results. Section 8 concludes
the paper.

2. Related Work and Motivation
This section briefly discusses related work in set-associative cache
design, prefetching, compiler algorithms for improving locality,
and trace driven cache replacement algorithms.

Direct-mapped first level caches have been popular because of their
low hit cycle time. They can yield good system performance, even
though set-associative caches have lower miss rates [12, 13]. Due
to rapid increases in miss cycle penalties, many recent architectures
use at least 2-way set-associative first-level caches, e.g., the Com-
paq Alpha 21364 and Sun Sparc2. To attain single cycle level-one
cache access in future technologies, processors will probably have
small level one caches with a low degree of associativity [3]. Some
architectures trade higher associativity with a simple cache replace-
ment policy. For example, IBM RS/6000 7043 has 64K 128-way
level 1 cache which uses random replacement policy. The hard-
ware mechanisms of an evict-me cache do not increase cycle time
and are only effective on set-associative caches; i.e., the hit time is
unchanged. The replacement logic on a miss considers one more
bit. Our work tries to achieve the hit rate of higher associativity by
improving the replacement decision of a cache with lower associa-
tivity, thus achieving both fast hit cycle time and low miss rates.

The evict-me bit is similar to, but not the same as the Alpha’s evict
instruction which evicts a cache line immediately and thus cannot
tolerate imprecision [17]. It is designed to maintain cache coher-
ence, rather than enhance locality. Our approach works for variable
cache and data sizes because only when the data does not all fit in
the cache will the replacement algorithm use our information. The
Alpha’s prefetch and evict-next instruction loads the line to the level
1 cache and evicts it on the next miss to the cache set [17], but we
instead tag actual loads, not speculative prefetches.

Our work takes an opposite approach as compared to hardware and
software data prefetching which tolerate latency [4, 15, 19, 24, 26].
Data prefetching tries to fetch data which will be used in the near
future to reduce miss penalties. Evict-me tags instead predict which
data will and will not be used in the near future, and keep the data in
the cache that will be used. Our technique eliminates misses, using
the cache more effectively as compared to prefetching. Evict-me
tags do not bring new data into the cache and thus do not have
the higher bandwidth and other overhead of prefetching. Prefetch-
ing often pollutes caches when it brings in useless data. Evict-
me tags can help alleviate the side effects of hardware prefetching.
In Section 6, our preliminary results show that the combination of
evict-me tags and hardware prefetching can further improve perfor-
mance.

McKee et al. [21] propose a stream buffer to bypass stream-like
data. We mark stream data as evict-me. But our technique works
on cache replacement directly and does not require an extra buffer.
The Intel IA-64 provides instructions to control caching [8]. The
non-temporal load/store bypasses the cache to avoid cache pollu-
tion due to streaming data. IA-64 supports locality hints used by
prefetch, load, and store instructions to control placements of cache
lines in either a “temporal structure” or “non-temporal structure”.
The hints do not direct cache replacement, but our compiler anal-
ysis could specify the non-temporal instructions and locality hints.

We do not explore this application here.

Numerous dynamic or hardware techniques have been proposed
to reduce cache misses, e.g., [2, 14, 15]. The victim cache was
originally designed to enhance direct-mapped caches [15]. It is a
small fully-associative buffer between the level 1 and 2 cache which
stores replaced data to reduce conflict misses that occur close to-
gether in time. It is probabilistic, rather than predictive. The evict-
me bit works directly on a cache and replacement decisions. John-
son et al. [14] propose a run time spatial locality detection mech-
anism. They use a hardware table to keep track of spatial locality
dynamically. The fetch size can be varied depending on the spatial
locality of fetched data. Their work does not address cache replace-
ment. Wong and Baer [35] enhance LRU with a temporal bit for
each cache line. Temporal bits act oppositely to our evict-me bits:
they specify lines to retain rather than lines to evict. Wong and
Baer determine temporal bit settings using profiling or an online
hardware history table. Rivers et al. [29] use a (hardware) detec-
tion unit, similar to a history table, to track reuses at run time and
to categorize access as temporal/non-temporal and cacheable/non-
cacheable. Lai et al. [18] use a hardware history table to predict
when a cache block is dead and which block to prefetch to replace
the dead one. Our technique is based on static compiler analysis
and does not require substantially additional hardware.

Previous work studies the limits of cache performance using pro-
gram traces. Belady [5] pioneered this area by comparing random
cache replacement, LRU, and a new optimal algorithm. Sugumar
and Abraham [31] used Belady’s algorithm to characterize capac-
ity and conflict misses. Temam [32] extended Belady’s optimality
result by simultaneously exploiting spatial and temporal locality.
These studies seek to understand cache characteristics rather than
to implement a real cache and related algorithms. Although our the-
oretical model in Section 5.1 is also based on static traces, we apply
it to a real cache using compiler analysis. Ghosh et al. [9] suggest
a set of miss equations for precisely analyzing cache misses for
individual nests. This model could probably be extended to sug-
gest evictions, but currently drives optimizations by comparing the
number of misses between compiler options. Our work is less pre-
cise for an individual nest, but computes or estimates data volume
between nests and between reuses. A better cache miss analysis
could improve our results.

Researchers have also proposed loop and data transformations to
improve data locality by moving temporal reuse closer together in
time and by introducing spatial locality [1, 16, 22]. These algo-
rithms do not directly improve replacement decisions and thus are
complementary to our work.

On-line page coloring and other mechanisms decrease paging, but
are too expensive for higher levels of the memory hierarchy. For
example, Early Eviction LRU (EELRU) [30] dynamically chooses
to evict the LRU page or the eth most recently used page. Refer-
ence history determines e, the early eviction point, but is too expen-
sive to store and use in caches. This approach eliminates capacity
page misses in a fully associative memory, whereas our technique
removes conflict misses for caches, using static compiler control.

3. Hardware Implementation
A simple implementation in the ISA is to duplicate a new set of
memory instructions which set the evict-me tags and are otherwise
the same as the the original set. We believe that the widening per-
formance gap between memory and processor speeds must even-

tually be reflected by additional instructions in the ISA that help
compensate for this gap. Hence, adding a new set of load and store
instructions to the ISA is one step in this direction, and a simple
step. However, our 1-bit evict-me replacement functionality can
also be implemented without changes to the ISA in some archi-
tectures. For instance, on the Alpha 21264, we can first use the
“prefetch and evict-next” instruction to set the evict-me bit and then
perform a register load or store [17]. This implementation needs
two loads or stores to set an evict-me bit and suffers inefficiency.

We use five extra bits in each memory instruction that the compiler
sets to resolve run time spatial locality (see Section 5.2). An alter-
native hardware implementation uses a new instruction to store the
5-bit constant into a special register. The following memory op-
erations will then access the special register and constant to detect
spatial reuse. The compiler could use loop unrolling to avoid any
extra instructions.

4. Locality
In this section, we briefly review locality, cache organizations that
exploit it, and ideal replacement algorithms. We introduce our
reuse notation and then present a new compiler algorithm that pre-
dicts locality within a loop nest (intra-nest) and between loop nests
(inter-nest).

4.1 Perfect Locality Information: Trace-based Replacement

The reason caches perform well is that most programs exhibit good
locality. The classical notions of locality found in programs are:
temporal locality - if an item is referenced, it will be referenced
again soon; and spatial locality - if an item is referenced, an adja-
cent item will tend to be referenced soon [12]. LRU takes advan-
tage of program locality. It tries to keep the recently referenced data
in cache and expects that data will be referenced again soon. How-
ever, as we pointed out earlier with regard to Figure 1, although
arrays A, B and C all have spatial locality in nest 1, only arrays A
and C have temporal locality due to reuses in nest 2. LRU can not
exploit this fact because its decision is based on history. But the
compiler can detect this information.

In our work, we want to approximate the locality of references in
a given program. Consider the following quantitative definition of
temporal locality [27]. The temporal locality of a data reference
at time T is TL = 1=(Tnext � T), where Tnext is the time of
the next access to that particular address. We can similarly define
spatial locality as follows. The spatial locality of a data reference
at time T is SL = 1=(Tnext � T), where Tnext is the time of the
next access to the same cache block.

In this work, we assume the minimum unit of communication be-
tween main memory and the cache is a block: whenever any part of
a block causes a miss, the architecture loads the entire block. Thus,
in our model, temporal locality is a special case of spatial locality.
If we know the temporal and spatial locality of each data reference
in a program trace, then the optimal replacement algorithm replaces
the data which has reuse furthest in the future, i.e., the data with the
smallest value for SL [5]. Of course, computing TL and SL re-
quires a complete trace which is not available at run time and is
impossible to know exactly via static program analysis. To control
cache replacement explicitly, we need a new method to describe lo-
cality. In the following section, we introduce reuse level, which is
a measure that is comparative rather than absolute. We then show
how to compute reuse levels using dependences.

4.2 Reuse Levels

Assume that we have a complete trace of a program: a series of
references in the program following the execution order, i.e., bf(1),
bf(2),..., bf(n). The subscripts are the block addresses which de-
termine the references. The block addresses of the references need
not be distinct, of course. Reuse level is used to approximate the
locality of each reference. Rather than describe a specific distance
from the current reference to the next reference to the same block,
reuse levels describe a range in which the next reference will oc-
cur. Formally, the locality of reference bf(i); 1 � i � n, is a set
s 2 Sn, where
Sn = f[n + 1;+1]g [f[j; k] j 1 � j � k � ng and [j; k] =
fj; j + 1; ::; kg:

1. If s is [n + 1;+1], then block bf(i) will not be referenced
again after the ith reference; i.e., f(i) 6= f(l) for all l; i <
l <= n.

2. If s is [j; k] for some j; k, i < j � k � n, then 9t; j �
t � k, such that the next reference to block bf(i) is the tth
reference in the trace, i.e., f(i) = f(t), and f(t) 6= f(l) for
all l; i < l < t.

Then we call the set s the reuse level of bf(i). To com-
pare reuse levels for references, we define three relations on
Sn :�;�, and �.

[i; j] � [n+ 1;+1] for all 1 � i � j � n

[i; j] � [k; l] if j < k

[i; j] � [k; l] if [i; j] \ [k; l] 6= �

[i; j] � [k; l] if [k; l] � [i; j]

Theorem 1. Only one relation holds for any two elements in Sn.

Proof. By definition. 2

Theorem 1 shows that reuse levels are comparable. Intuitively, if
two blocks conflict, we want to replace the block whose reuse level
is � than that of the other block. When two reuse levels are � to
each other, we use access history to break ties (as does LRU).

4.3 Using Dependences as Reuse Levels

This section explains how to combine dependences with the loop
iteration space to produce reuse levels. We assume the reader is
familiar with dependence analysis which detects reuse between ar-
ray references in a loop nest [10, 28]. We use dependence testing
to detect temporal and spatial reuses within a loop nest. To detect
reuses between distinct loop nests, we use bounded regular sec-
tions [11] to describe the access range of a reference in a loop nest.
The descriptors for bounded regular sections (BRSD) are vectors of
elements, each of which is a triplet. A triplet describes an accessing
range in a dimension, consisting of a lower bound, an upper bound,
and a step. The bounded regular section for A(I,J) in Figure 2(a) is
[2 : M � 1 : 1; 2 : N � 1 : 1]. The descriptors support union and
intersection operations. There is a reuse between two references in
distinct nests if the intersection set of their BRSDs is not empty.

We build a locality graph based on reuses. The graph describes
temporal and spatial locality within each loop nest and across loop
nests. An edge connecting two references in the same loop nest
contains the reuse vector. An edge connecting two references in
distinct loops contains the intersection of the two BRSDs. Fig-
ure 2(b) shows the locality graph for the sample program in Fig-
ure 2(a), where for simplicity we omit B(I+1,J) and B(I,J+1). In

PROGRAM SimplifiedJacobi
PARAMETER (N=1000, M=1000)
REAL A(N, M), B(N, M)

DO J = 2 , N-1
DO I = 2, M-1

A(I, J) = (B(I-1, J)+B(I+1, J)+B(I, J-1)+B(I,J+1))/ 4
ENDDO

ENDDO
DO J = 2, N-1

DO I = 2, M-1
B(I, J) = A(I, J)

ENDDO
ENDDO

END

(a) Another simple program

A[I,J] at N1

[2:M-1,2:N-1]

B(I,J-1) at N1

[2:M-1,1:M-2]

B(I,J) at N2

[2:M-1,2:N-1]

A[I,J] at N2

[2:M-1,2:N-1]

B(I-1,J) at N1

[1:M-2,2:N-1]

inter-loop [2:M-1,2:N-1] inter-loop [2:M-2,2:N-1]inter-loop [2:M-1,2:N-2]

spatial(=,=,<)spatial(=,=,<)

spatial(=,=,<)spatial(=,=,<)

spatial(=,=,<)

temporal (=,<,>)

(b) Locality graph

Figure 2: A simple program and its locality graph

Step/order 0 1 2 3 4 5 6
block 1 r1 < [3; 4]; 1 > r1 < [3; 4]; 1 > r1 < [3; 4]; 1 > r1 < [21; 28]; 4 > r2 < [10; 12]; 5 > r2 < [10; 12]; 5 >

PREDICTION block 2 r2 < [5; 6]; 2 > r3 < [5; 6]; 3 > r3 < [5; 6]; 3 > r3 < [5; 6]; 3 > r3 < [10; 12]; 6 >

miss/hit miss miss miss hit miss hit
block 1 r1 r1 r3 r3 r2 r2

LRU block 2 r2 r2 r1 r1 r3
miss/hit miss miss miss miss miss miss

Table 1: LRU versus Prediction for a 2-way set-associative cache

Figure 2(b), the first element of a reuse vector denotes the inter-
nest reuse direction. If it is ’=’, the reuse is in the same nest. If it is
’<’. then the dependence is inter-nest. Now the vector (=;<;>)
from B(I-1,J) to B(I,J-1) denotes an intra-nest input dependence
and a temporal reuse across J loop.

We can rely on reuse vectors as predictors of access patterns. We
can use those vectors as reuse levels if we also add information that
describes the relative position between independent references. We
can either track the loop iterations at run time or keep the reuse
levels up to date as different instances of a reference execute. Now
a reuse level is a set of loop iteration points which consist of run
time memory references. For example, we can use the direction
vectors shown in Figure 2(b) as reuse levels with the following se-
mantics. The B(I,J-1) has a self spatial reuse with direction vector
(=;=; <). The direction vector by itself means there is a spatial
reuse due to a later reference to B(I,J-1) itself in the same nest,
the same J iteration, but the later I iterations. As a reuse level, the
direction vector means the iteration points from the next I iteration
through I=M-1. Specifically, given an loop iteration at I=5 and J=4,
the run time instance of reference B(I,J-1) is B(5,3), whose reuse
level (=;=; <) means it has a reuse between iteration I=6 and it-
eration I=M-1 under J=4. To illustrate our idea, let’s take off the
spatial reuse vector of B(I-1,J). Now Reference B(I-1,J) only has a
temporal reuse with vector (=; <;>) which means the reuse is in
the later J iterations. It is obvious that (=;=; <) � (=; <;>). So
when B(5,3) and B(4,4) conflict, our cache replacement policy will
choose the cache line of B(4,4) to evict. We now describe cache
replacement algorithms that use reuse levels.

5. Cache Replacement Algorithms
In this section, we show how to improve cache replacement deci-
sions in an ideal case and within the context of realistic cache orga-
nizations. First, we develop a general framework that is guaranteed
to match or improve hit rates over LRU given sufficient hardware
support. We then present a simple, but practical one-bit encoding,

called the evict-me bit, that indicates when a cache block is a good
choice for replacement.

5.1 Improving LRU Cache Replacement

Our first cache replacement algorithm, the Prediction algorithm,
uses the access order of a reference and its reuse level to direct re-
placement. Consider a program trace b<s1;1>

f(1) , b<s2;2>
f(2) ,..., b<sn;n>

f(n) ,
where bf(i) is the ith block accessed by address f(i), and < si; i >
are its reuse level and access order respectively. We define a rela-
tion / on the set Qn = f< si; i >; si 2 Sn; 1 � i � ng, as
follows:
< si; i > / < sj ; j > if (si � sj) or (si � sj and i > j):

Each <reuse level, order> pair is an element of Qn.

Theorem 2. For each pair of elements in Qn, < si; i > and <
sj ; j > , i 6= j, either < si; i > / < sj ; j > or < sj ; j > / <
si; i >.

Proof. By definition.2

The Prediction algorithm updates a reference’s order and its reuse
level in the cache on every access. Think of a cache set as an or-
dered list from smallest to largest by the / ordering of the <reuse
level, order> pairs. Initially every reuse level is the [n + 1;1],
and on a reference, the architecture sets the reuse level if it is speci-
fied. Whenever there is a miss, the last line with the largest <reuse
level, order> pair is replaced. When a reference changes the cache
line’s <reuse level, order> pair, we change its position in the list.
We compare it to the other items in the list from first to last until
the / ordering of the line is smaller than that of the next element,
and then insert the line before this next element. Although the /
ordering is not a partial order (because it is not transitive), the def-
inition of the Prediction algorithm and the list ordering algorithm
guarantees that there is a deterministic ordering of the list after each
cache access; i.e., Theorem 1 and 2 are sufficient to ensure that the

Prediction algorithm is totally specified.

The following example illustrates the algorithm. Assume a two-
way set associative cache and a simple program trace a

<[3;4];1>
r1 ,

a
<[5;6];2>
r2 , a<[5;6];3>

r3 , a<[21;28];4>
r1 , a<[10;12];5>

r2 , a<[10;12];6>
r3 , ...,

all of whose elements are mapped into a single cache set. Here r1,
r2, and r3 are references to distinct blocks in main memory. The
content of the cache is shown in Table 1. In step 3, LRU replaces
r1, which leads to a miss in step 4. However, since < [3; 4]; 1 >
/ < [5; 6]; 2 >, the Prediction algorithm replaces r2 instead. In this
example, it performs better than LRU, which results in all misses.

Theorem 3. For the same cache configuration (same cache size,
same degree of associativity, and same block size), at each refer-
ence point, if there is an LRU hit, there is also a Prediction hit.

Proof. See appendix.2

Theorem 3 tells us that the Prediction algorithm is at least as good
as the LRU algorithm at any reference point. So if we can find a
reuse level for each reference point, we expect to improve upon the
LRU algorithm. In Section 4.3, we have shown that dependence
vectors combined with loop iterations can predict reuse distances.

5.2 Evict-me: 1-Bit Encoding

The Prediction algorithm can be implemented by encoding reuse
levels into memory instructions. We previously studied a 16-bit
encoding [34] which serves as a useful upper bound on the compiler
accuracy. Using 16 auxiliary bits for each cache line will increase
the time to determine which line to replace and may consume too
much area. For an 8K level one cache with 32-byte cache line, 16
extra bits would contribute about 5% to the cache area.

There are two ways to address these problems. One is to implement
the policy in lower-level caches where the cost of extra reuse level
bits and the comparison latency are relatively low. For example, a
256K level two cache with 128-byte cache line only need devote
1.5% additional area to annotations. The other way is to simplify
the model. A 16-bit encoding implies up to 216 reuse levels. The
evict-me tag denotes two reuse levels, s1 (no reuse) and s0 (reuse).
We combine it with the LRU bits as we discussed in Section 5.1.
The Prediction algorithm performs as following. If the evict-me bit
of a block is set, the replacement algorithm will choose that block
to replace on a miss. Otherwise, it follows the LRU policy. The
compiler generates special-purpose instructions to set evict-me bits
and thus explicitly control cache replacement.

This one-bit encoding suggests that we classify reuse distances into
two levels such that a distance vector in one level is always less
than one in the other level. A simple and very conservative algo-
rithm tags the array references which have no locality in a loop nest
and are not reused in any following nests. Assume the total number
of run time memory accesses in a routine of a nest is n. In the nest,
the algorithm uses two reuse levels, s0 = [1; n] for references with
reuses on this nest or subsequent nests, and s1 = [n+ 1;+1] for
references with no reuses in this subroutine. Following the defini-
tion in Section 4, we have [1; n] � [n+1;+1]. A more aggressive
algorithm follows Theorem 4.

Theorem 4. In a w-way set-associative cache, if the number of
distinct references mapped into the same set between a reference
and its reuse is greater than w, then evicting the first reference in
the next replacement will not degrade the overall LRU hit rate.

setEvictMeTag()
f

for each loop nest f
compute nest volume
for each array reference r in the nest f

if (r has no temporal reuse in this nest) f
if (nest volume > 2 * cache size)

mark r evict-me
else if (volume unknown && nest level � 2)

mark r evict-me
else if (r has no temporal reuse with the next nest)

mark r evict-me
if (r has spatial reuse) set reference step

g
g

g
g

Figure 3: Algorithm for setting evict-me tag

Proof. See appendix.2

We can design an algorithm which sets the EM tag when accessing
a reference without reuse or with reuse that is sufficiently far away.
Accurately counting the number of distinct references mapped to a
specific cache set is impossible at compile time when the iteration
counts and size of arrays are unknown. We estimate these sizes
at compile time. If the loop bounds of the nest are all constants
and available at compile time, we combine them with the BRSDs
to compute the exact data volume. When the loop bounds of a nest
are unknown, we use a simple heuristic which assumes that the data
volume of a nest is greater than two times the level one cache size
if it contains more than one level of loop nesting.

Now, if we can determine the total data volume between a reference
and its reuse across loop nests, and it is greater than twice the cache
size, then we predict it will not be reused; i.e., that the number of
distinct references mapped into a set between the two reference will
be greater than the degree of associativity. This intuition implies
that Theorem 4 holds.

Figure 3 presents the aggressive algorithm for singling out refer-
ences without temporal or spatial reuse in a nest. It never marks
references with temporal intra-nest reuse. It sets the evict-me bit
for those references whose reuse spans more than two times the
cache size, or when the data volume is unknown, whose nesting
depth is 2 or more, or if the reference has no temporal reuse with
the adjacent nest. If the reference has spatial locality on any loop
level, the compiler marks it, such that the architecture will exploit it
before marking it for eviction. In the program in Figure 2(a), we set
the evict-me tags of A(I,J) in both nests, the tag of B(I,J-1) in nest
1, and that of B(I,J) in nest 2, because these four references have
no temporal reuses and the total data volume of each nest (near 8
�106) is greater than twice the cache size. We are able to mark very
aggressively because the evict-me bit is only examined on a miss,
when the architecture needs to replace something.

In our implementation, we encode the spatial locality information
of a reference into the memory instruction and let the hardware
detect it at run time. Formally, we consider only arrays with the
least significant index in the form of a � I + b, where I is the loop
induction variable, and a and b are constants. We assume that the

Conf. 1 Conf. 2 Conf. 3
Level 1 8K, 2-way 32K, 2-way 64K, 4-way

32 byte cache line
Level 2 128K, 2-way 256K, 4-way 512K, 2-way

128 byte cache line

Table 2: Three cache configurations

loop step of the induction variable I is a constant s. Let p be the
word position of the reference in the cache line, l be the cache line
size, e be the element size in the number of words, and a � s be
the reference step. If a � s is positive, the reference has self-spatial
reuse when p < l�a�s�e. If p > �a�s�e and a�s is negative,
the reference also has self-spatial reuse. Similar techniques resolve
group-spatial reuse. The reference step is usually very small. We
use five bits to encode the reference step. For a reference with evict-
me tag marked by the compiler, if it also has spatial locality, the run
time environment waits to set the bit until after the spatial reuse is
complete.

5.3 Effectiveness of Evict-me Algorithm

The evict-me algorithm is sensitive to both program access patterns
and cache configurations. For a specific program with a specific
input, evict-me bits can be very effective in one cache configuration
but help little in the other. Take the simple program in Figure 1 as
example. Assume that N is 4K, a word size is 4 bytes, and the
starting address of array A is aligned to 16K. In a 32K 2-way level
1 cache, A(I), B(I), and C(I) will be map to the same set for each I.
In this case, B(I) annotated with the evict-me bit will help reduce
inter-nest misses. However, in a 64K 2-way level 1 cache, array
A and B will map to different cache areas and thus evict-me will
perform exactly the same as LRU. Given a complicated application
which contains many loops and different access patterns, evict-me
will yield a better cache replacement for some and not other inputs
and cache configurations.

6. Experimental Results

6.1 Compiler, Simulators, and Benchmarks

For our experiments, we use Scale, a compiler infrastructure devel-
oped by our research group. It accepts C and Fortran source code as
input. The system translates the source code into an intermediate
representation called Scribble. Scribble keeps the high-level pro-
gram structures such as loop and array references and, at the same
time, the low-level operations. Our dependence testing is based on
the Omega library [28, 33]; we used its algorithms and interfaces,
but rewrote it in Java, since the rest of Scale is in Java. We im-
plemented the analyses described in Section 4 and Section 5 and
performed them on Scribble. We apply on Scribble a set of opti-
mizations such as sparse conditional constant propagation, loop in-
terchange, global value numbering, partial redundancy elimination,
and scalar replacement. We then output Sparc assembly. The evict-
me tag and reference step of a memory instruction are encoded into
an unimplemented Sparc instruction. We put the marking instruc-
tion before the memory instruction. We use the level 1 cache size
to drive our algorithm. The simulator we use preprocesses the ma-
chine code and merges the two instructions.

We use URSIM developed at the University of Utah to simulate
the performance impact of the evict-me cache [36]. URSIM is
an extension to RSIM, which simulates a state-of-the-art out-of-
order processor, lock-up free cache, and multi-bank memory [25].
Scale generates Sparc assembly code with annotated load/store in-
structions for URSIM. We updated URSIM to accept the special

(a) Conf. 1

(b) Conf. 2

(c) Conf. 3

Figure 4: Miss reduction by Evict-me

load/store instructions and perform the corresponding replacements.

We use nine benchmarks. Liv18, Vpenta, Erlebacher, and Jacobi
are kernels. Swim, Tomcatv, and Applu are from Spec95. Arc2d is
a Perfect benchmark and Appsp is from the Nas Benchmarks. We
selected benchmarks that had high miss rates or loop nest structures
with inter-nest misses, and that ran through our compiler.

We configure URSIM to model a 4-way issue and out-of-order pro-
cessor core. We use two levels of cache which are all non-blocking,
and have eight miss status handler registers (MSHRs) each. Evict-
me can be turned on/off in both levels of the cache. We apply three
level 1 and level 2 cache combinations of sizes and associativities,
as shown in Table 2. The three configurations share the same cache
line size and latencies. The level 1 cache line size is 32 bytes and
the latency 2 cycles. The level 2 cache line size is 128 bytes and
latency 8 cycles. The latency for memory access is between 48 and
200 cycles and depending on the state of the machine; this range
reflects the sophistication of the accurate memory model. We also
examine all our benchmarks using a 5 year hardware projection
where the level 2 latency is increased to 20 cycles and the mem-
ory access latency is 200-500 cycles. These projections come from
Agarwal et al.[3].

6.2 Miss Rates Results

Figure 4(a) through Figure 4(c) show the normalized miss rates
at the three cache configurations when the evict-me replacement
is turned on for both level 1 and level 2 caches. At the top of each
bar, the LRU miss rate is listed. For example, at configuration 1, the
miss rate of Applu by LRU at level 1 is 9.43%. Evict-me reduces
the miss rate by 21%. The miss rate of level 2 is the level 2 misses
with respect to total accesses rather the misses of the level 1 cache.
We use this representation to show the combined effects of evict-
me on the two levels of cache. The miss reduction in the level 2
cache comes not only from better replacements in the level 2 cache
itself, but also from better level 1 replacements which reduce the
traffic between the two level caches.

We observe a significant miss reduction for both levels of cache. As
we discussed in Section 5.3, evict-me could be very effective in one
cache configuration but less so in others. For Applu, the miss rate
at level 1 is reduced by 21.13% in configuration 1 but only 1.37%
in configuration 2. At certain cache configurations, we reduce the
miss rate of Applu, Swim, and Tomcatv by about 50%. Overall,
the miss reduction ranges on average from 10% to 20%. Evict-
me never degrades the miss rate, although mispredictions resulting
from our heuristics in Section 5 might cause a degradation.

6.3 Static and Dynamic Replacement Counts

Table 3 shows static and dynamic statistics on evict-me tags and
their effect on replacements for our programs. The second column
is the percent of annotated instructions among all static load and
store instructions. We mark 25% of the memory instructions on av-
erage at compile time. The numbers in the remaining columns are
collected under the cache configurations of a 64K L1 4-way cache
and a 512K L2 2-way cache (Conf. 3), with evict-me caching on
in both caches. The third and the fifth columns are the percent
of cache accesses in which we set the evict-me bit in the level 1
and 2 caches respectively. The fourth and the sixth columns show
the percent of replacements where the evict-me bit changes the re-
placement decision as compared to LRU’s decision. It changes 4%
to 24% of the decisions in the L1, and 0 to 15% in the L2. These
changes do not correspond well to changes in miss rates because

Static Dynamic (Conf. 3)
evict-me L1 evict-me L1 Repl. L2 evict-me L2 Repl.

Applu 12.05 13.81 6.66 30.41 3.44
Appsp 8.93 9.06 15.04 24.46 9.61
Arc2d 25.96 20.61 4.29 36.30 14.86
Erlebacher 25.36 12.64 12.62 15.68 13.16
Jacobi 50.00 33.95 24.10 56.36 2.35
Liv18 43.82 30.01 21.61 53.31 1.42
Swim 20.95 21.51 8.30 53.35 0.21
Tomcatv 9.52 4.89 13.03 4.98 0.57
Vpenta 35.05 15.69 11.71 25.57 3.51

Average 25.74 18.02 13.04 33.38 5.46

Table 3: Static and dynamic statistics on evict-me

one change can result in several more hits, or no additional hits. For
example, evict-me removes many misses for Tomcatv and Swim
but alters 13% or fewer L1 replacement decisions. The changes
to level 2 replacements are on average very low which means that
the L2 miss reductions also come from better L1 replacements and
more L1 hits that yield less traffic between the caches.

6.4 Simulated Performance Results

Table 4 shows the performance impact of evict-me. The columns
titled “L1” and “L2” show performance improvements when the
evict-me caching is turned on for the level 1 cache only and for
level 2 cache only respectively. The columns titled with “L1+L2”
are the improvements when the evict-me caching is turned on for
both caches. For current technology, we see reductions in execu-
tion time of 4.89%, 8.39%, and 6.94% on average for the three
configurations. We see larger improvements in simulation cycle
time, 9.99%, 15.62%, and 12.31%, for predicted technology for 5
years from now when the gap between processor speed and mem-
ory speed increases. Usually and on average, the performance im-
proves most when the evict-me caching is turned on in both caches.
We see more contribution from the level 2 cache in most cases be-
cause the gap between the access time of the level 2 cache and
memory is relatively larger than the gap between the two caches.
In our experience, out-of-order execution often hides L1 cache la-
tencies, but not L2 [20].

An interesting case is Vpenta which improves the most with evict-
me turned on only in the level 2 cache at configuration 1 and 2.
When evict-me is on in both caches, the level 1 evict-me cache
replacements change the access pattern of the level 2 cache, and in
this case, reduce its effectiveness. In Swim, the opposite is true; the
level 1 cache dominates the evict-me performance improvements
because the level 1 miss rate is very high and evict-me reduces it
by 19% - 56%.

6.5 A Less Aggressive Compiler Marking Algorithm

We also investigate a slightly more conservative compiler algorithm
for setting the evict-me bit. We use the same algorithm from Fig-
ure 3, except we change the test for nest level � 2, to be � 3, and
thus mark fewer references as evict-me. With this algorithm, our
results are unchanged for Jacobi, Liv18, and Vpenta because the
compiler computes the data volume precisely. For Applu, Appsp,
and Arc2d, this more conservative algorithm is slightly better, but
for Tomcatv and Swim, it does not set enough bits, and the original
is much better.

6.6 Combination of Evict-me and Hardware Prefetching

Hardware prefetching has been widely studied to hide cache la-
tencies [4, 15, 19, 24, 26]. Prefetched cache blocks may pollute
the cache if the blocks are useless. Several techniques seek to re-

8K L1, 128K L2 (Conf. 1) 32K L1, 128K L2 (Conf. 2) 64K L1, 512K L2 (Conf. 3)
Current 5 years out Current 5 years out Current 5 years out

Program L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2 L1 L2 L1+L2 L1+L2
Applu 10.58 0.37 11.30 31.91 0.24 3.92 4.17 34.21 10.08 10.04 11.74 25.86
Appsp 0.32 2.57 2.60 8.50 0.27 5.22 4.93 16.65 0.19 0.55 0.49 2.53
Arc2d 0.00 4.89 4.81 7.93 0.00 21.97 21.59 30.22 0.00 9.87 9.48 26.03
Erlebacher 0.48 1.10 1.20 3.27 0.66 1.10 1.46 4.67 0.37 1.37 1.48 5.92
Jacobi 2.05 4.85 5.17 11.88 0.00 5.19 0.79 1.89 1.57 0.00 1.40 2.18
Liv18 0.32 1.17 1.50 2.26 1.35 0.64 2.17 2.67 2.12 0.48 2.54 2.78
Swim 10.57 1.48 9.48 11.30 11.46 1.72 11.23 11.68 6.59 0.00 6.53 6.38
Tomcatv 0.66 1.98 2.45 7.01 5.72 3.23 7.30 13.60 7.66 0.00 7.62 16.05
Vpenta 0.00 11.03 5.51 5.83 0.31 32.00 21.91 24.98 0.21 20.03 21.21 23.07

Average 2.78 3.27 4.89 9.99 2.22 8.33 8.39 15.62 3.20 4.70 6.94 12.31

Table 4: Percent performance improvement by evict-me

8K L1, 128K L2 32K L1, 128K L2 64K L1, 512K L2
(Conf. 1) (Conf. 2) (Conf. 3)

Evict-me Prefetching Evict-me+ Evict-me Prefetching Evict-me+ Evict-me Prefetching Evict-me+
Prefetching Prefetching Prefetching

Applu 11.30 -0.36 0.16 4.17 1.02 13.34 11.74 -0.59 13.44
Appsp 2.60 0.89 3.03 4.93 0.87 5.92 0.49 0.95 1.50
Arc2d 4.81 -8.79 -3.13 21.59 -7.79 16.84 9.48 0.48 11.74
Erlebacher 1.20 -1.97 2.53 1.46 -0.70 2.94 1.48 0.06 3.27
Jacobi 5.17 3.62 9.83 0.79 2.37 6.85 1.40 5.96 3.03
Liv18 1.50 3.01 4.43 2.17 2.99 4.52 2.54 2.88 4.22
Swim 9.48 1.62 9.17 11.23 2.02 14.95 6.53 1.01 8.60
Tomcatv 2.45 -0.17 2.33 7.30 -0.21 7.07 7.62 1.13 9.49
Vpenta 5.51 -13.24 -3.01 21.91 -10.80 14.36 21.21 -9.64 6.81

Average 4.89 -1.71 2.82 8.39 -1.14 9.64 6.94 0.25 6.90

Table 5: Combining Evict-me and Prefetching

duce cache pollution. For instance, hardware can detect strided
accesses and selectively prefetch blocks which are expected to be
useful [26]. Evict-me can help reduce the impact of cache pollution
introduced by hardware prefetching in two ways. First, the cache
pollution by a prefetched cache block may be harmless if it evicts
a block which is marked as evict-me. In this situation, the marked
line is probably useless anyway. Second, compilers can use locality
analysis to decide when prefetching is necessary. We can mark a
prefetched block as evict-me if our confidence on its locality is low.
We explore the first option by combining a simple level 1 hard-
ware prefetching mechanism implemented in URSIM with evict-
me. The current level 1 cache prefetching in URSIM prefetches the
next adjacent cache block when there is a cache miss and the level
1 request queue is not full. The hardware drops the prefetching
request if there is no MSHR available. Table 5 shows the perfor-
mance impact of the level 1 prefetching. We notice that this simple
prefetching mechanism frequently degrades performance. How-
ever, the combination of prefetching and evict-me outperforms ei-
ther of them in most cases at cache sizes of 32K (Conf. 2) and 64K
(Conf. 3). For Applu at 32K, prefetching and evict-me improve
execution times by 1.02% and 4.17% respectively. However, the
combination introduces a performance improvement of 13.34%.

Figure 5 shows the normalized cycles at configuration 3 for LRU,
evict-me, level 1 prefetching and the combination of evict-me and
prefetching. We compare them with the cycles under perfect caches.
The cycles under perfect L1 are based on the assumption that all
level 1 accesses are hits. We apply the same assumption to col-
lect cycles for perfect level 2 cache where the level 1 cache still
uses the LRU replacements. When there is a performance gap of
about 20% or more between LRU and perfect L1, such as in Applu,
Arc2d, Swim, Tomcatv, and Vpenta, either evict-me or its combina-
tion with prefetching shows significant performance improvement.
An interesting case is Swim where evict-me beats perfect L2. This

Figure 5: Evict-me and Prefetching versus Perfect Caches
(Conf. 3)

result is because of its dominating level 1 miss rate and 48% miss
reduction by evict-me on the level 1 cache.

7. Other Comparisons
We also did some miss rate explorations using SimpleScalar [7].
These results are not directly comparable to those we report above
because they use very different ISAs and architectures. Above we
use URSIM on Sparc binaries. With SimpleScalar, we use C code
generated by Scale. We then compile it with gcc, and generate
PISA binaries. PISA is an ISA specific to the simulator. Scale per-
forms different optimizations and produces very different code than
gcc. However, the miss rates in both studies follow the same trends.
In experiments with SimpleScalar, we also compared evict-me to
an optimal replacement algorithm, to higher set-associativity, and
to the victim cache [34]. The victim cache and evict-me sometimes
worked well on different programs, i.e., neither subsumes the other.

They always worked better together than on their own. Sometimes
they were better than optimal replacement due to good use of the
small additional space provided by the victim cache.

8. Conclusions
In this paper, we develop a theoretical model for static compilation
analysis to direct cache replacement algorithms and prove that it is
at least as good as LRU. This work opens a new path for reducing
cache misses by compiler hints to improve replacement decisions.
We present and implement a 1-bit evict-me version of our algo-
rithm. We demonstrate that the 1-bit evict-me algorithm is practi-
cal enough to implement in current set-associative caches, and in
multiple levels of the cache hierarchy. Furthermore, our simula-
tion results show that the evict-me algorithm consistently improves
performance through reduced miss rates when compared with LRU
and is very effective on multiple levels of the cache. We combine
the evict-me algorithm with hardware prefetching. We find that
evict-me can negate the effects of cache pollution introduced by
prefetching and further improve performance.

9. Acknowledgments
Thanks to David Culler for his insights on architectural trends. We
also thank Lixin Zhang who developed much of the URSIM simu-
lator. This work is supported by NSF ITR grant CCR-0085792,
NSF grant ACI-9982028, NSF grant EIA-9726401, Darpa grant
30602-98-1-01015, Darpa grant F33615-01-C-1892, and IBM. Any
opinions, findings and conclusions or recommendations expressed
in this material are the authors and do not necessarily reflect those
of the sponsors.

10. REFERENCES
[1] W. A. Abu-Sufah. Improving the Performance of Virtual Memory

Computers. PhD thesis, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, 1978.

[2] A. Agarwal and S. D. Pudar. Column-associative caches: A
technique for reducing the miss rate of direct-mapped caches. In
Proceedings of the 20th International Symposium on Computer
Architecture, pages 169–178, San Diego, CA, May 1993.

[3] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures.
In Proceedings of the 27th International Symposium on Computer
Architecture, pages 248–259, June 2000.

[4] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to
reduce data access penalty. In Proceedings of Supercomputing ’91,
Albuquerque, NM, Nov. 1991.

[5] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):79–101, 1966.

[6] D. Burger, A. Kägi, and J. R. Goodman. Memory bandwidth
limitations of future microprocessors. In Proceedings of the 23rd
International Symposium on Computer Architecture, Philadelphia,
PA, May 1996.

[7] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version
2.0. Computer Architecture News, 25(3):13–25, June 1997.

[8] C. Dulong. The IA-64 architecture at work. IEEE Computer, pages
24–32, July 1998.

[9] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for
program transformations with caches of arbitrary associativity. In
Proceedings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
228–239, San Jose, CA, Oct. 1998.

[10] G. Goff, K. Kennedy, and C. Tseng. Practical dependence testing. In
Proceedings of the SIGPLAN ’91 Conference on Programming
Language Design and Implementation, pages 15–29, Toronto,
Canada, June 1991.

[11] P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis. IEEE Transactions on Parallel and
Distributed Systems, 2(3):350–360, July 1991.

[12] J. Hennessy and D. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1995.

[13] M. D. Hill. A case for direct-mapped caches. IEEE Computer,
21(12):25–40, Dec. 1988.

[14] T. L. Johnson, M. C. Merten, and W. W. Hwu. Run-time spatial
locality dection and optimization. In Proceedings of the 30th
International Symposium on Microarchitecture, Research Triangle
Park, NC, Dec. 1997.

[15] N. P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Proceedings of the 17th International Symposium on Computer
Architecture, pages 364–373, Seattle, WA, June 1990.

[16] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A
matrix-based approach to the global locality optimization problem.
In The 1998 International Conference on Parallel Architectures and
Compilation Techniques, Paris, France, Oct. 1998.

[17] R. E. Kessler, E. McLellan, and D. Webb. The Alpha 21264
microprocessor architecture. Technical report,
http://www.compaq.com/AlphaServer/download/ev6chip.pdf, Nov.
1999.

[18] A. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block
correlating prefetchers. In Proceedings of the 28th International
Symposium on Computer Architecture, June 2001.

[19] W. Lin, S. K. Reinhardt, and D. Burger. Reducing dram latencies
with an integrated memory hierarchy design. In Seventh
International Symposium on High Performance Computer
Architecture, pages 301–312, Monterrey, Mexico, Jan. 2001.

[20] G. Lindenmaier, K. S. McKinley, and O. Temam. Load scheduling
with profile information. In A. Bode, T. Ludwig, and R. Wismüller,
editors, Euro-Par 2000 – Parallel Processing, volume 1900 of
Lecture Notes in Computer Science, pages 223–233. Springer-Verlag,
Aug. 2000.

[21] S. A. McKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H.
Salinas, J. H. Aylor, and A. P. Batson. Smarter memory: Improving
bandwidth for streamed references. IEEE Computer, pages 54–63,
July 1998.

[22] K. S. McKinley, S. Carr, and C. Tseng. Improving data locality with
loop transformations. ACM Transactions on Programming
Languages and Systems, 18(4):424–453, July 1996.

[23] K. S. McKinley and O. Temam. Quantifying loop nest locality using
SPEC’95 and the Perfect benchmarks. ACM Transactions on
Computer Systems, 17(4):288–336, Nov. 1999.

[24] T. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 62–73, Boston, MA, Oct.
1992.

[25] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM reference manual
(version 1.0). Technical Report Technical Report 9705, Rice
University, Dept. of Electrical and Computer Engineering, Aug.
1997.

[26] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a
secondary cache replacement. In Proceedings of the 21th
International Symposium on Computer Architecture, pages 24–33,
Chicago, IL, Apr. 1994.

[27] M. Prvulovi, D. Marinov, Z. Dimitrijevic, and V. Milutinovic. A
survey annd reevaluation of performance. IEEE TCCA Newsletters,
pages 8–17, 1999.

[28] W. Pugh. A practical algorithm for exact array dependence analysis.
Communications of the ACM, 35(8):102–114, Aug. 1992.

[29] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M. Farrens.
Utilizing reuse information in data cache management. In
Proceedings of the 1997 ACM International Conference on
Supercomputing, pages 449–456, Melbourne, Australia, July 1998.

[30] Y. Smaragdakis, S. Kaplan, and P. Wilson. Eelru: Simple and
effective adaptive page replacement. In Proceedings of the ACM
SIGMETRICS Conference on Measurement & Modeling Computer
Systems, pages 122–133, Atlanta, GA, May 1999.

[31] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches
under optimal replacement with applications to miss characterization.
In Proceedings of the ACM SIGMETRICS Conference on
Measurement & Modeling Computer Systems, pages 24–35, Santa
Clara, CA, May 1993.

[32] O. Temam. An algorithm for optimally exploiting spatial and
temporal locality in upper memory levels. IEEE Transactions on
Computers, 48(2):150–158, Feb. 1999.

[33] Univerisity of Maryland. The Omega Library, 1996.
http://www.cs.umd.edu/projects/omega/.

[34] Z. Wang, K. S. McKinley, and A. L. Rosenberg. Improving
replacement decisions in set-associative caches. In Proceedings of
MASPLAS’01, The Mid-Atlantic Student Workshop on Programming
Languages and Systems, Hawthorne, NY, Apr. 2001.

[35] W. A. Wong and J. Baer. Modified lru policies for improving
second-level cache bahavior. In Sixth International Symposium on
High Performance Computer Architecture, pages 49–60, Toulouse,
France, Jan. 2000.

[36] L. Zhang. URSIM reference manual. Technical Report
UUCS-00-015, University of Utah, Aug. 2000.
http://www.cs.utah.edu/projects/impulse.

APPENDIX
Proof of Theorem 3. The proof is based on the trace we defined at the
beginning of Section 5.1.

Say that we are working on a w-way set associative cache. Assume, for
contradiction, that at reference b<si;i>

f(i)
there is a miss for Prediction algo-

rithm and a hit for LRU. Let b
<sj ;j>

f(j)
be the nearest reference to the same

block address where j < i. We know that f(i) = f(j).

Claim 1: There are no more than w distinct references mapped into the

same set between b
<sj ;j>

f(j)
and b

<si;i>

f(i)
included.

To simplify the discussion, assume that each block in a set is aged from 1
to w by the access order. The block with the smallest order has age w, the
one with the largest order has age 1. With the LRU algorithm, the block

with age w is evicted when there is a miss. At the time when b
<sj ;j>

f(j)
is

brought into the cache, its age is 1. Assume for contradiction that at least w

distinct references are different from bf(j) between b
<sj ;j>

f(j)
and b

<si;i>

f(i)

are mapped into the same set. All those w references have greater order than
that of bf(j) , so each reference will increase the age of bf(j) by 1. Thus,
when we access the w � 1th reference of that kind, bf(j) has age w. The
access to the wth reference of that kind will evict bf(j), and no reference

will bring bf(j) back because b<si;i>
f(i)

is the most recent reference to block

bf(j) . This contradicts the hit at b<si;i>
f(i)

.

Next assume that there is an age between 1 and w associated with each
block in the list defined for Prediction cache in Section 5.1. The ages of the
blocks are consistent with the ordering of the list. The< reuse level; order >

pair of the block at age 1 is smaller in / ordering than the pair of the next

block in the list, and so on. We let ti denote the time when the ith ref-
erence gets accessed and assume after time �t, the access completes. We
have ti +�t < ti+1 for all i.

Say now that bf(j) has age m at time tj +�t. Because we have a miss of

b
<si;i>

f(i)
at time ti , there exists a reference b

<sk ;k>

f(k)
at time tk , for some

j < k < i , which is also a miss and bf(j) has age w when the reference

b
<sk�1;k�1>

f(k�1)
completes.

Claim 2: All addresses in the cache set at time tk�1 + �t are referenced
at least once between time tj and ti .

Let rj;1; rj;2; :::; rj;m�1; rj;m; ::; rj;w be the block addresses in the cache
set at time tj + �t and rk;1; rk;2; :::; rk;w be those at time tk�1 + �t,
where the second subscript denotes the age of the corresponding address.
We know that rj;m = rk;w = f(j). Let U = frj;1; rj;2; :::; rj;m�1g \
frk;1; rk;2; :::; :; rk;wg.

First, all addresses in S = frk;1; rk;2; :::; :; rk;wg�U must be referenced
between time tj and tk�1 + �t. Assume, for contradiction, that rl 2 S

is not referenced during this period, then rl 2 S must be referenced before
time tj , and must be in the cache set at time tj since it is in the cache
set at time tk�1 + �t. Then since rl is not in frj;1; rj;2; :::; rj;m�1g
because it is in S, it has an older age than that of bf(j) at time tj +�t. No
reference can change this relationship unless the two references themselves
are accessed again between time tj+�t and tk�1 . Note that bf(j) has age
w at time tk�1+�t. rl must be evicted before time tk�1 since it is older.
Then it can not be in the set at time tk�1 +�t, contrary to assumption.

Second, all references in U must be referenced between time tj and ti .
Notice that all references in U have < reuse level; order > pairs / than
that of bf(j) at time tj + �t just after bf(j) is brought into cache. Since
the orders of these references are less than j, by the definition of relation
/, they must have smaller reuse levels which means they will be referenced
before the next reference to bf(j), which occurs at time ti.

The references in the w-block set at time tk�1 +�t are distinct. Further-
more, the reference bf(k) is distinct from the blocks in the set since it is a
miss. The total number of distinct references mapped into the set between
time tj and ti are at least w + 1. Contradiction. 2

Proof of Theorem 4. Let’s say we are working on a w-way set associative
cache and a program trace P . We focus on a specific cache set C. Assume
that sub-trace bs1

f(1)
; b
s2
f(2)

; :::; b
sn
f(n)

is the largest subset of P mapped into

set C in its original order. bf(i) is the ith block mapped into C, and its block
address is f(i). si is the evict-me tag going with the access. In particular,
si = 0 means it is a regular access; si = 1 means the block’s evict-me tag
gets set after this access. Following the condition of the theorem, we have
the following assertion,

Assertion: If si = 1, then j � i > w for any access bf(j) where f(j) =
f(i) and j > i.

Now we prove that for any access b
sj
f(j)

in the sub-trace, if LRU results in
a hit, then there is a hit for evict-me at this access. Assume that we get an
LRU hit at b

sj
f(j)

. Let access bsi
f(i)

be the closest reference to block bf(j)

where i < j. Since it is an LRU hit, we have j � i <= w (we proved
this in the proof of Theorem 3). Now si = 0 follows the assertion. Since
si = 0, the evict-me algorithm can at most increase the age of bf(i) by 1

at each following reference. So at access b
sj�1
f(j�1)

, the age of bf(i) should

be less than w. Evict-me algorithm leads to a hit at b
sj
f(j)

. 2

