Eliminating Exception Constraints
of Java Programsfor |A-64

<http://www.trl_1bm.com/projects/jit/index_e.htm>

Kazuaki Ishizaki, Tatsushi Inagaki,
Hideakl Komatsu,Toshio Nakatani

IBM Research,
Tokyo Research Laboratory

Goal of the Paper

m |\ otivation

m Enableto perform code motion to exploit instruction level
parallelism (IL P) of | A-64 for Java

m Enableto perform only beneficial speculative code motion

m Our approach " exception speculation™ using
speculative code motion

» Perform exception speculation on directed acyclic graph (DAG)
m Experimental results
B SUummary.

A Running Example
m Java program and bytecode

Java program
int foo(int af[], int 1) {
return a[i1] + 1;

}

Byitg(i?)g(j PE| (Potentially Excepting I nstruction)
S eonat i may throw a Java exception.
1add

ireturn

|nter mediate Representation

m Java language introduces many exception checks

| nter mediate Representation (IR)

Java program
int foo(int a[], int i) {

return af[i1] + 1;
¥ exception check
Bytecode

1aload
iconst 1
1add
ireturn

len vli=[a] load instruction

exception check

load instruction

Id v4=[v2+v3]

<
C

Problemsin Java

m An exception dependence between exception
check and load suppresses code motion

exception check
ception dependence

load instruction

Cannot move load
Instructions acr 0ss
exception checks

Exception
dependence

exception check
I1d v4= [V2+V3] Exception dependence
load instruction

Control Speculation in | A-64

m An speculative load instruction allows dependant
loadsto issue aload earlier beforethe conditional
branch I1sresolved.

May defer a hardwar e exception

|d moved acr oss
br.cond

Id tl=

Chteck a deferred hardwar e exception

Before performing After performing Chk.stakes many cycles
control speculation control speculationtO redo the load

If Id.s t1= defersan exception.

Our Approach - Exception Speculation

m Eliminate exception dependence edges from each load

exception check
ception dependence

Move load instructions

acr oss
exception checks

exception check

Why We Distinguish Between
Control and Exception Speculation

m Reducethesize of IR by not splitting basic blocks
» \We do not handle exception dependence as control dependence.

> |n our experiments, # of basic blocks can be increased by a
factor of four without using exception dependence edges.

m Estimate the benefit of exception speculation along
the exception dependence edge.

» [he code can be moved speculatively only when it is beneficial
on the DAG.

Where We Perform Exception
Speculation

e e e e e i
- —

NEUYE
code

Algorithm Outline

1. Decide whether a load can be moved speculatively

> \When Delay(n) is set only by exception dependence, where nisan
Instruction.

Delay(n)= max Deay(m)+ Latency(m)

mePred(n.DA

2. Determine a speculative chain
» | oad and the succeeding instructions w/o side effect

3. Eliminate and connect exception dependence edges
» Restructure a DAG to Issue a load earlier.

4. Create dependence edges

> Maintain edges to preserve the correctness

5N 10

Our DAG for Exception Speculation

Java Program DAG
int foo(int af[], int 1) {
return af[i] + 1;

}

| nter mediate Representation
nul Icheck a

add v2 = a, 16
shiftl v3 = i, 2 T~
boundcheck 1 < vl Id

id \VZil
add v5

[v2+v3] .
v, 1
ret v5 DEIE e
dependence
: 1
Exception
dependence ——
1

1

Decision to Perform Exception

Srpeculation
m Calculate the maxirnum ‘a=arg0

possible delay to execute load

» Perform exception speculation
If thetime
set by exception dependence
Isthe slowest.

Decision to Perform Exception

Speculation
m Calculate the maxirnum ‘a=arg0

possible delay to execute load

» Perform exception speculation
If thetime
set by exception dependence
Isthe slowest.

2+0>1

- beneficial ”

Decision to Perform Exception

Speculation
m Calculate the maxirnum ‘a=arg0

possible delay to execute load

» Perform exception speculation
If thetime
set by exception dependence
Isthe slowest.

beneficial

14

Deter mine Speculative Chain
m Determine izargl

a chain of Instructions T
that have no side effects
as a speculative chain
—— L/
S

1d

Speculative chain

5N 15

Exception Dependence Edge
m E|liminate an edge from Id ‘a=arg0 izargl
m Decompose ld into ld.s and

/&h / l
chk.s
“

m Connect an edgeto a chk.s. o shiftl

A. For executing
nullcheck and boundcheck \
befor e executing recovery code

16

Dependence Edges
m Create edgesto chk.s ‘a=arg0 izargl
A |
4

A. Sourcevariables of chk.s i /

B. Variables referenced

In the recovery code

m Create an edge from chk.s #en shiftl
C. To each ingtruction that uses ~ ° / :
any variable defined in

the recovery code.

\

I

/
/

Recovery code \ /
S

17

Experimental Results

m [V easurementsfor:
» Perfor mance improvement
» Code Size expansion

m Benchmarks

» Java Grande Benchmark Version 2.0
» SPECjvm98

B Environments
> |[BM Developers Kit for | A-64, Java Technoloegy Edition, 1.3
> 2-way 800M Hz [tanium with 2GB memaory
> \Windoews XP Advanced Server

Performance | mprovement

m Exception speculation Is effective in programs
With many array accesses

m | mprove performance with an average of 2.0%.

Higher bars are better

Speedup over no Exception Specul

5N 19

Code Size Expansion
m | ncrease code size with an average of 2.6%.

i
=

Smaller bars are better

Code expansion over no Exception Speculatic

Summary

m Propose a new solution " exception speculation”

» Eliminate constraint of aload instruction by exception
dependences on a DAG representation.

» Perform speculative code motion based on cost-benefit analysis.

m Show the effectiveness using a production Java JI T
compiler

5N 21

Thanks!!

m | et'stake a coffee break.

22

