
SYNCHRONIZING THE REPLAY ENGINE WITH THE RECORD
ENGINE FOR X86 ARCHITECTURE

By Apoorva Kulkarni(askulkar@ncsu.edu) And Vivek
Thakkar(vthakka@ncsu.edu)

PROBLEM DESCRIPTION

An analysis tool has been developed which characterizes the communication behavior of
large scale massively parallel applications which use MPI to communicate amongst
parallel tasks. This tool has essentially two components – record engine and replay
engine. Record engine efficiently produces the communication traces in compressed
file(s) and replay engine replays the execution and generates statistical data for analysis
purpose. The current record engine has some extensions done over a period of time.
However, the corresponding changes have not been done to the replay engine. So, our
task is to identify the changes that are needed and to make those changes and do the
benchmarking with small and large benchmarks.

ACTION POINTS

1. Take the source code for old record engine and old replay engine (given in
src.tar.gz).

2. Compile record and replay. Make changes in config/Makefile.config,
libsrc/stack_sig.h and libsrc/util.c by comparing with the same files given in the
new record. Make other changes if required.

3. Try to run sample programs given in “tests” subdirectory. First run by linking
them with libumpire.a which is generated as a result of compiling the record
engine. Do the initial runs on 1 processor. The record engine should produce the
desired trace file(s). Now run the replay engine (linked with mpiP) giving it the
path of the trace files Verify the outputs against outputs produced by mpiP. Test
2-3 sample programs. Do the runs on 2, 3 and 4 processors. Perform testing on at
least one large benchmark like NAS.

4. Completion of step 3 ensures that old record and replay are synchronously
working. Now, make this old replay file as the base file on which the extensions
need to be merged. Doing a diff on the libsrc sub directories of the old record and
new record shows some minor differences in the following files: Makefile, mpi-
spec.umpi.extract, rsd_queue.h, umpi_internal.c, umpi_internal.h,,transfer.h,
umpi_mpi.c, umpi_mpi_lookup.c. The action point would be to understand the
changes and their motivation. Also an intermediate report (HW5) has to be
submitted.

5. Establish a common understanding to identify the changes that may be needed in
the replay engine corresponding to the changes done in the record engine. Make
those changes on the base replay file (refer 4) to get the new replay engine in sync
with the new record engine. They are anticipated to be very few (nonetheless very
essential).

6. Compile the code and run small benchmarks as done in step 3. Run the tests on
large benchmarks like NAS,ASCI, purple etc. Use different DEBUG switches

(ref. README of record engine) to ensure the correctness of intermediate and
final outputs. While benchmarking try to find if some changes can be made in the
algorithm to ensure better compression.

PROJECT PLANNING

We believe that the major portion of this project involves understanding of the code and
testing & debugging. Minor efforts in changing the code and compilation may also be
needed. We think that the only task that can be divided amongst the team members is
testing and debugging since both the members are required to know about every other
module. Hence the division of work will be performed dynamically as the project
proceeds. The planning chart can be shown as below:

REFERENCES

[1] Class Slides and Paper by M. Noeth, F. Mueller, M. Schulz, B. de Supinski, Scalable
Compression and Replay of Communication Traces in Massively Parallel Envrionments,
submitted to IPDPS 2007
[2] Dynamic Software Testing of MPI Applications with Umpire
www.llnl.gov/CASC/people/vetter/pubs/sc00-umpire-vetter.pdf
[3] ASCI purple benchmark
 http://www.llnl.gov/asci/purple/benchmarks/limited/code_list.html
[4] NAS parallel benchmark
 http://www.nas.nasa.gov/Resources/Software/npb.html

LINK TO OUR WEBPAGE

http://www4.ncsu.edu/~askulkar/mpitrace.html

