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Abstract
Dependence graphs can be used as a vehicle for formulating and implementing compiler optimizations. 
Static compiler analysis of a program may lead to conservative dependence graphs, some of whose 
edges might be exercised with extremely low probability during most execution runs. Also, imprecise 
pointer analysis may add may-dependence edges that might prevent aggressive compiler optimizations 
from being applied on the program. TBDA proposes building a dynamic dependence graph (DDG) 
based on memory reference traces obtained during a typical run of the program. TBDA also proposes 
annotating the edges in the dependence graph with distance vectors, direction vectors and probability of 
the dependence edge being exercised, which can be used by a compiler to base heuristics for 
speculative or user-directed parallelization.

Introduction
The advent of multi-cores, the academic and industry must solve the parallel programming problem for 
a broad range of applications with your typical good programmers, not just rocket scientists. There 
exists a lot of code that has not not been parallelized and which has been written in languages like 
C/C++ on which pointer analysis is difficult. Standard compilers like gcc implements very limited and 
conservative  pointer  analysis.  More  powerful  research  compilers  capable  of  performing  more 
aggressive analysis and optimizations are not easily available or are broken. In that light, a tool that 
makes dependence information available to the user and compiler can guide the compiler to performing 
optimizations which it couldn't using it's own analysis. A user may also use the information from the 
dependence analyzer to quickly identify potentially parallel regions in the program.

Recent research in thread level speculation (TLS) has proposed methods for parallelizing serial code. 
TLS systems can tolerate code generation which ignores dependences, by having a run time system 
which detects and recovers from dependence violations. While TLS provides a method to aggressively 
or optimistically parallelize a program, careful selection of threads is required to see a performance 
improvement. Manually inspecting programs in order to identify speculative threads is not feasible for 
large and complex programs. In such a situation, a tool which inspects the memory reference trace of a 
program to automatically guide speculative thread selection, would be very useful to study the limits of 
thread level speculation.
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Framework
Figure 1 shows the overall framework of the trace based analyzer with the interaction of the various 
systems and the flow of information through the framework.

The trace based dependence analyzer operates in two distinct phases. The first phase is the tracing 
phase in which the target  program is instrumented to generate a  memory trace,  loop iteration and 
function call markers. The instrumented program is then compiled with the tracing library and run with 
training input to generate a trace file of the memory references. In the second phase, the trace file is 
given as input to the dependence analyzer which builds the dynamic dependence graph of the program. 
In  the following sections  we describe the instrumentation and dependence analysis  frameworks  in 
detail.

Instrumentation Framework

The instrumentation framework was implemented in  Intel's Open Research Compiler (ORC) for the 
Itanium architecture. Since one of the most promising sites for parallelism in a program is loops, the 
compilation phase chosen for inserting instrumentation into the program was the Loop Nest Optimizer 
(LNO). The internal representation of the compilation units in ORC is called WHIRL [6]. The WHIRL 
nodes in the IR that are of interest to be instrumented to generate the memory reference trace of the 
target program are scalar loads (LDID),  scalar stores (STID),  indirect loads (ILOAD) and indirect 
stores (ISTORE). In order to capture loop carried dependences, loop nodes (DO_LOOP) were inserted 
too. To capture dependences across different functions each call site is instrumented.

We walk the WHIRL tree of each function in pre-order and insert instrumentation code for each of the 
above  nodes.  Each  instrumentation  point  is  given  a  reference  ID  and  information  about  the 
instrumentation point is stored in a file which is also fed to the dependence analyzer. The reference ID 
uniquely identifies a static instrumentation point and also contains information like the type of the 
instrumentation, the size of the memory reference and debugging information like line number of the 
program being instrumented. This strategy of instrumentation was chosen in order to reduce the size of 
each trace record to a reference ID, memory address tuple.

The exact instrumentation strategy for each type of node is explained below.

Figure 1: Trace Based Dependence Analyzer Framework
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Memory References

For each memory reference (LDID, STID,  ILOAD, ISTORE) we copy the subtree computing the 
address of memory being referenced and pass it to the tracing function. Consider the following source 
code line, it's simplified WHIRL statement and simplified generated assembly code.

X = X + 1; (STID        , X) mov r1 = &X

(ADD    , 1) ld r2 = [r1]

(LDID X) add r3 = r2,1

st [r1] = r3

Source code WHIRL tree Assembly instructions

As can be seen, the order in which instructions encountered in the tree-representation is the reverse of 
the lowered order. So when inserting instrumentation for a statement, the calls to the tracing library are 
inserted in reverse order so that the order of the memory reference trace is correct.

Loops

In order to be able to generate distance vectors it is necessary to distinguish between accesses made in 
different iterations of the same loop. We thus need a mechanism to mark beginning and ends of each 
loop iteration. Instead of generating loop_begin and loop_end markers at the beginning and end of the 
loop body, instrumentation is just added for loop_begin at the beginning of the loop body. Thus all the 
accesses in each particular loop iteration, apart from the last iteration, is bounded by two loop_begin 
markers. For the last iteration and to denote the end of a set of loop iterations, we insert a  loop_end 
marker just after the loop. This has the advantage that the instrumented code for loop_end is executed 
only once for a loop. This also means that fewer tracing records are written out. The instrumentation is 
kept minimal and induction variable values are not traced. As will be seen later in the dependence 
analyzer, induction variable values are not required to compute distance vectors.

Calls

Calls cause a unique problem in that they aggregate a number of loads and stores which occur in the 
function body and any calls subsequently made by the called function. The dependence analyzer needs 
to be able to aggregate any such loads and stores into a single call node when detecting a dependence 
edge. For that reason each call site is instrumented with a  function_begin and  function_end markers. 
Similar to the scheme described in the previous section about loops, it might be possible to insert the 
function_end instrumentation just before the return of the callee and reap the benefit that there would 
be at most one function_end per function and is independent of the number of call sites.



Dependence Analysis Framework

The instrumented binary is then run to produce an execution trace. The dependence analyzer uses the 
reference ID meta-file, generated by ORC while instrumenting the program, and the trace file generated 
by running the instrumented program and computes the dynamic dependence graph of the program. It 
annotates  dependence  edges  with  calling  context  information  and  distance  vectors  using  the 
loop_begin, loop_end, function_begin and function_end markers. In the following sections we describe 
how the framework calculates dependences and their  corresponding distance and direction vectors. 
Figure 2 shows a high level view of the dependence analyzer.

Detecting Dependences

The  dependence  analyzer  maintains  two  hash  tables  for  detecting  dependences.  One  is  for  store 
references  and  the  other  is  for  load  references.  The  memory  reference  stream  is  read  in  by  the 
dependence analyzer and each load and store instruction is hashed into its corresponding hash table 
using the address of the reference as the key. All the references to the same address are stored in the 
hash bucket as a linked list which is traversed when detecting dependences.

For flow dependences, whenever a load is read from the trace, the store hash table entry for the same 
address is checked. If the bucket is not empty, then the list of stores are traversed and flow dependence 
edges are added for each store. In a similar way, for anti and output dependences, whenever a store is 
read from the trace, the load and store hash tables are checked respectively, and dependence edges are 
added to the dynamic dependence graph.

Extended Iteration Vectors

In  order  to  detect  loop  carried  dependences  and  dependences  across  functions,  calling  context 
information and loop nesting information.  Loop nesting information can be derived using iteration 
vectors. We extend the concept of an iteration vector to also contain calling context information due to 
which cross iteration as well as cross-function dependences can be detected transparently. This section 
describes the generation of these extended iteration vectors.

The dependence analyzer maintains current context information by maintaining a stack of descriptors 
for each loop and function call. When a  loop_begin is encountered and the reference ID is different 
from the current  context,  a  new loop descriptor is  pushed onto the stack with zero as the current 
iteration number. If the reference ID of the loop_begin marker is the same as that of the current context, 
the the current context's descriptor's current iteration is incremented by 1. Thus without using the value 
of induction variable, we maintain loops in canonical form. Whenever we encounter a loop_end we pop 

Figure 2: Dependence Analyzer
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the descriptor off the stack of the current execution context. Similar action without the complexities of 
iteration  numbers  is  performed  for  the  function_begin  and  function_end markers.  This  stack  of 
descriptors forms an extended iteration vector.

Distance and Direction Vectors

Distance vectors characterize dependences by the distance between he source and sink of a dependence 
in the iteration space of the loop nest containing the statements involved in the dependence. In some 
situations it is useful to work with distance vector that is expressed in terms of umber of loop iterations 
that dependence causes.[5]. Extended iteration vectors are stored along with each load/store access. 
When a dependence is detected. The extended iteration vectors are aligned for a common prefix and the 
difference of their iteration numbers of loop descriptors is computed and the distance vector is stored in 
a list along with the dependence edge. For each distance vector computed, the direction vector of the 
edge is updated.



Solved Issues
1. Generation of dynamic dependence graph of functions with and without loops

● The Pre-Optimizer did not build DU-information for the function because of which it was 
not possible to instrument the IR at LNO.

● Tweaked the Pre-Optimizer to build DU-information for all functions.

2. Switched to a reference ID instrumentation strategy

○ The trace files being generated were too large. In an attempt to reduce the size of the trace 
file, this strategy was employed.

○ Along with reducing each trace record to two integers, packing structures together to save 
on padding space was also employed to reduce the size of the trace file.

Testing
The trace based dependence analyzer has been tested with a few  micro benchmarks. The test cases 
were designed to handle the following cases:

1. Dependences with both memory references inside a single loop nest.

a) Unique distance vectors per edge.

b) Multiple distance vectors per edge.

2. Dependence with one reference in a loop nest and the other in a function call.

3. Dependence with both references in disjoint function calls.

The equake benchmark has also been instrumented with ORC and been traced.

Open Issues
1. Getting equake to run through the dependence analyzer.

2. Generating dependence probabilities similar to the scheme mentioned in [7].

3. Correlating the reference IDs with source code line number information.

4. Running the dependence analyzer over the NAS benchmark set.

5. Using the profile information inside ORC.

a) Correlating the dependence graph generated by the dependence analyzer with the 
dependence graphs inside ORC.

b) Using the dependence probabilities to speculatively remove dependence edges.

c) Perform a limit study of speculative parallelization using the trace based analyzer.
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