Trace Based Dependence Analyzer

Ravi Ramaseshan (rramase@ncsu.edu)

Progress Report 1 - 7th Nov 2006

Timeline

26 Oct 2006

07 Nov 2006

13 Nov 2006:

20 Nov 2006:

27 Nov 2006:

04 Dec 2006

Project Tasks

Project Statement:
Write problem description and set up a webpage.

Project Report I:
Generate trace based dependence graph with ILOADs,
ISTOREs, LDIDs, STIDs and CALLs for micro-benchmarks.

Run the tool over standard benchmarks, test code and fix bugs.

Map output of tool to source code lines. Identify TLS
regions in the benchmarks.

Plug dependence graph into ORC, run optimization passes and
generate speedup results.

End of Project:
Class presentation.

1. Generating a trace-based dependence graph.
* Handle the following references:
- Array references: ILOADs and ISTOREs.
- Scalar references: LDIDs and STIDs.
- Call references: CALL.
* Generating dependence and direction vectors.

2. Running the tool over benchmark suites.
* Test the tool and fix bugs.
* Analyze the benchmarks for speculative optimizations.
- TLS regions.

3. Speculative optimizations.
* Plug trace-based dependence graph into ORC.
* Run loop optimization passes.
* Generate speedup results.

Progress

The tool now generates a trace based dependence graph for all the
instruction types.

Instrumented call sites and inserted tracing calls into the IR to dump
call trace information. The dependence analyzer uses the call trace in
the following way:



The iteration vectors generated for loads and stores, besides having
the normalized iteration counts of the loops, now also have call
information.

Consider the following code:

for (1 = 0; i < N; i++)
for (j =0; j <M; j++)

A[i] = 5; // A
A[i+1] = 6; // B
foo (); // C
foo () {
for (k = 0; k < N; k++)
A[O] = A[i] + A[i+1]; // D

}

Consider the end of the first iterations of the ith and jth loops. The
iteration vectors for A and B are (Loop-i 0, Loop-j 0) and the
iteration vectors for the two loads and the store at D are

(Loop-i 0, Loop-j 0, Call-foo, Loop-k 0).

There might be dependences between the loads and stores in the for-i,j
loop nest and foo. This iteration vector is used to aggregate all the
load stores in foo to the call node at C and show such dependences
between the call node and load-stores in the for-i,j loop nest.

Open Issues

The instrumentation point in ORC that I've used currently is invoked
only for loop nests. So straight line code doesn't get

instrumented. This poses a problem when dealing with calls. Unless the
procedure being called has a loop nest, it isn't instrumented.

Next Steps

1. Workaround the no-loop function tracing problem.
2. Run the tool for the NAS benchmark.



