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Task 1: Parallelizing NAS CG Benchmark for CUDA 

Abhishek Dhanotia (adhanot@ncsu.edu) 

 

1. The kernel part of the CG benchmark which was implemented in CUDA 

(1) Conj_grad function consumes most of the computation time in the program. 

(2) This function implements a matrix-vector multiplication on a sparse matrix as 

shown below:  

 

 

 

 

 

 

 

 

 

 

 

2. Work distribution for each thread 

(1) Each iteration in the j loop involves 2*(rowstr(j+1) – rowstr(j)) computations 

(2) 2 Approaches for parallelization were followed 

(3) Approach 1 – Invoking a kernel for each iteration of the j loop. 

a. For class A inputs, j goes from 1 to 14000 which means invoking 14000*5 

CUDA kernels 

b. Each thread in the invoked kernel would do a part of the k iterations 

(4) Approach 2 – Invoking 1 kernel for each iteration of cgit  

a. For class A inputs, cgit iterates over 1 to 15 meaning there are a total of 

15 kernels invoked by the program 

b. Each thread in this case would involve going over the complete k 

iterations of a particular j iteration 

 

3. Issues in compiling Fortran code for CUDA 

(1) PGI compiler was used to code and compile the CUDA version of the CG 

benchmark 

(2) However, there were a lot of issues involved in the compilation and running the 

code with PGI. The major ones are listed below 

a. The compiler does not seem to support usage of shared memory in all 

combinations. It gives some compilation errors when trying to copy data 

 

1110       do cgit = 1, cgitmax 

1117          do j=1,lastrow-firstrow+1 

1118             sum = 0.d0 

1119             do k=rowstr(j),rowstr(j+1)-1 

1120                sum = sum + a(k)*p(colidx(k)) 

1121             enddo 

1122             w(j) = sum 

  Some MPI Sends and Receives 

1123 enddo 
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from shared to global memory directly and vice versa. Hence for the given 

code, global memory was only used for all the computations 

b. When invoking large number of threads, the code gives a “copyin 

Memcpy Failed” error even when there is no memory is being used inside 

the kernel. This was a major bottleneck as the kernel could not be run for 

more than 16 threads with 16 thread blocks in most cases.  

c. The result of this report can thus not be generalized for all possible 

combilations of Thread and thread block dimensions 

(3) The data copying from device to host and vice versa takes up unexpectedly large 

amount of time thereby not allowing for speedup in all simulations if overall time is 

considered. 

(4) The kernel invoking time also seems to be a bottleneck as it takes up a lot of wall 

clock time invoking a kernel from the conj_grad function. The reason for this and 

the memory copy problem could not be determined. 

(5) The cudaEvent APIs didn’t work on PGI (giving some compilation errors) so had to 

use the get_time function of fortran for calculating timings 

 

Results and Analysis 

1. Time for Data transfer from Host to Device and vice versa 

(1) The Data copy from host to device takes 8.89 seconds on average per iteration 

(2) The Data copy from device to host takes 2.62 seconds on average per iteration 

 

2. Kernel execution time using host and then using 2 different kernels  

Case 1: Running 100 iterations of the j loop ignoring the time for data transfer for Class A 

input of the CG benchmark 

(1) Time taken on host = 22.6 ms 

 

Figure1: Execution time of Kernel1 Vs Kernel2. (X Axis denotes NxN dimension for 

kernels) 

 

(2) Time taken using approach 1 on different number of threads 
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Nblocks* BlockDim 4x4 8x8 16x16 

Time(ms) 383 93 27 

 

(3) Time taken using approach 2 on different number of threads 

 

Nblocks* BlockDim 4x4 8x8 16x16 

Time(ms) 14 12.54 11.37 

 

As can be seen from the results, approach 2 gives better performance over approach 1. 

The main drawback for approach 1 is the spawning of a large number of kernels which is a 

huge overhead. On the other hand, approach 2 spawns only a few number of kernels 

thereby reducing the overhead and making the simulation faster 

 

Case 2:Running 10000 iterations of the j loop ignoring the time for data transfer for Class 

A input of the CG benchmark. 

(1) Total execution time for the main program kernel on the host for each iteration is 

396 ms (average)  

(2) Kernel run times for different number of threads for approach 2 

 

Nblocks* BlockDim 4x4 8x8 16x16 32x32 128x128 

Time(ms) 12.23 12.12 11.8 11.46 11.14 

 

 

Figure2: Kernel2 Time per computation for different number of threads. X Axis denotes 

NxN dimension for the kernel 

 

The kernel execution time for the core computation of CG becomes much faster when 

CUDA is used. However, if the time taken for data transfers between the Host and the 

Device are considered, it turns out that the overhead far surpasses the advantages of 

using the kernel for computation. It seems that the PGI compiler is not optimizing data 

transfers between host and device and hence the overall speedup numbers don’t give a 

clear picture of the CUDA acceleration capabilities 
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Open Problems/ Future Work 

(1) The PGI Fortran compiler is still in its beta version and there are several issues which still 

need to be resolved. Hence running full scale simulations was difficult as there were some 

runtime issues which could not be resolved. 

(2) The compiler gave some memory allocation errors when shared memory was used. 

Hence all the results were generated based on calculations in the global memory. If shared 

memory is used, that would further speedup the kernel computation times 

(3) Device to Host data transfers (and vice versa) took up an unexpectedly large amount 

thereby resulting in an overall slowdown when running the code on CUDA. This needs to 

be looked upon. Maybe adding some compiler optimizations/accelerators would help. 

(4) The CG benchmark could not be run completely due to some runtime errors when running 

the code for a large number of iterations. So the generated results are for a scaled down 

version of the benchmark.  

 

 

Task 2: Parallelizing DT Benchmark on CUDA  

Fang Liu (fliu3@ncsu.edu) 

 

DT benchmark takes one argument: BH, WH or SH which specifies the communication graph 

Black Holes, White Holes or Shuffle respectively. The number of nodes in a communication 

graph is a constant value once the Class type is specified, and the number of executable 

processors should not be less that number. Specifically, for Class A, BH, WH and SH require 

21, 21 and 80 nodes respectively. 

 

1. Computation Hotspots 

Running MPI version of DT benchmark on hery2, we can identify the computation hotspot 

function RandomFeatures as shown in Table 1 below: 

 

 Table 1 Profiling Computation Hotspots for Different Communication Graph 

Graph % time cumulative 

seconds 

self 

seconds 

calls self 

ms/call 

total 

ms/call 

name 

BH 33.33 0.01 0.01 1 10.00 10.00 RandomFeatures 

WH 100.00 0.01 0.01 1 10.00 10.00 RandomFeatures 

SH 0.54 1.74 0.01 1 10.00 10.00 RandomFeatures 

 

2. Algorithm Analysis 

The major computation in RandomFeatures is a nest loop which generates data elements and 

stores them in a large array of a node:  

 

 

 

 

 

 

for (i = 0; i < len; i += fdim){ 

    for (j = 0; j < fdim; j++) { 

       h_seed[j] = (h_seed[j] * ng[j]) % n[j]; 

       feat->val[i+j] = h_seed[j]; 

    } 

  } 
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The inner loop is actually a vector operation with dimension of fdim since the arrays h_seed[ ], 

ng[ ] and n[ ] have fdim independent elements. The outer loop is loop-carried dependent in 

which current iteration is dependent on the previous iteration. Based on this observation, we 

can offload the computation to CUDA threads at the granularity of fdim in which CUDA threads 

operate on at least fdim independent data streams. In the source code, fdim is fixed to value of 

4. Therefore, the thread block size is multiples of 4.  

 

3. Simulation Results 

Class A is the one has the largest working set size among the classes that have verified results. 

If the CUDA kernel leads to correct result, the standard output will show “Deviation = 0.000000” 

and “Verification = SUCCESSFUL”. Hence this is the criterion for implementing CUDA kernel 

function.  

 

We collect results for kernel computation time as well as total execution time. We compare the 

results between CUDA in which the kernel computation is extracted and running on the device 

while the remaining code is running on the host and MPI in which the entire execution 

including kernel computation and remaining code is running the host only.  

 

(1) Kernel Time on CUDA vs. MPI 

 

Figure1 Kernel time on CUDA with various thread block sizes vs. MPI 

 

Figure1 shows the kernel computation time when it runs on the host (MPI bars) compared 

to when it runs on the device with various thread block sizes for different graph types of 

Class A. From the figure we can see that kernel computation on the host is two orders of 

magnitude larger than the kernel computation including cudaMalloc and cudaMemcpy on 

the device (~11000 vs. 110), indicating the significant performance benefits provided by 

CUDA device. Moreover, as the thread block size increases (the number of blocks is fixed 

to 1), the CUDA time decreases almost linearly due to the increased parallelism of CUDA 

threads provided. 
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(2) Total Execution Time on CUDA vs. MPI  

 

 
(a) block size = 4 

 

 

(b) block size = 8 

Figure2 Total execution time of CUDA version vs. MPI version 

 

Figure 2 shows the entire execution time of DT benchmark when it runs only on the hosts 

(MPI bars) compared to when its kernel computation is running on the CUDA device with 

various numbers of blocks for (a) 4 threads per block and (b) 8 threads per block. From 

both figures we can see that kernel code running on the device does not contributes much 

to the entire execution although itself does show performance benefits (Figure 1) for 

communication graph BH and WH. For graph type of SH, CUDA version improve the 

overall performance. One possible reason for this might be DT benchmark is more 

sensitive to communication than computation while parallelizing the kernel on CUDA 

cannot reduce communication overheads in BH and WH. However, in SH, more nodes are 
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involved in computation and more overlapping of communication in the graph, so 

parallelizing kernel computation on CUDA can improve total execution time. 

 

 

Task 3: Parallelizing IS Benchmark on CUDA   

Fei Meng (fmeng@ncsu.edu) 

 

IS benchmark inside NAS Benchmark package is to parallel sort over small integers. The 

algorithm deployed inside the program is “bucket sorting”. Bucket sorting works by partitioning 

an array into a number of buckets, and each bucket is then sorted individually. In this parallel 

benchmark, every parallel node first sort its own numbers into individual buckets, then all the 

nodes exchange their own buckets with all the other nodes to get its own partition. In the end, 

everyone sort the final partition to get all numbers ranked correctly. 

 

Here is the basic idea of the algorithm. 

 

 

Node 0 

 

Node 1  

 

Node 2  

 

Node k 
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Node 1  

 

Node 2  

 

Node k 

 

 

 

Node 0 

 

Node 1  

 

Node 2  

 

Node k 

Bucket 0  |  Bucket 1  |  Bucket 2  |  Bucket 3  | ……… 

Bucket 0  |  Bucket 1  |  Bucket 2  |  Bucket 3  | ……… 

Bucket 0  |  Bucket 1  |  Bucket 2  |  Bucket 3  | ……… 

Bucket 0  |  Bucket 0 of Node 1  |  Bucket 0 of Node 2  | ……… 

Bucket 1 of Node 0  |  Bucket 1  |  Bucket 1 of Node 2  |  ……… 

Bucket 2 of Node 0  |  Bucket 2 of Node 1  |  Bucket 2  | ……… 

Ranked Keys… 

Ranked Keys… 

Ranked Keys 
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1. Hotspots 

Through gprof and the analysis of the program, the hotspots are across several domains. First, 

randomly generating the original numbers of every single node takes almost half of the final 

consuming time on that node. I was trying to do parallelism on this time-consuming part, but Dr. 

Mueller denied the work in this direction. The second hotspot of the program is on the MPI 

functions like “Allreduce” and “Alltoallv”. Since CUDA parallelism could do nothing on this part, 

I neglected parallelism here too. The final part of the benchmark which might be improved lies 

on three subroutines inside the rank function. Details of the analysis of these three routines is 

below in section two.  

 

2. Algorithm Analysis 

Three different routines parallelized in my program are as follows: 

1) Bucket size initialize. 

 

 

 

Each bucket size is obtained after a full scan of the key array. Scanning of one key 

increases its corresponding bucket size by one. I use CUDA to parallelize this routine. 

Specifically, every thread is assigned to one key in the array and all the threads increase 

its own bucket size. An “atomicAdd” function is used inside the kernel to keep 

consistency of the shared size across the threads. 

2) Sorting local numbers according to the bucket size, i.e assigned numbers to the right 

Positions to be prepared for exchange with other nodes. 

 

 

 

 

 

 

Similar with routine one, each thread takes care of one key in the array and put it to the 

right position of the buffer array. “atomicAdd” is also used here. 

3) Final calculation of the ranked keys. Each node count the numbers of equivalent keys 

and record this size. 

 

 

 

Similar with routine one, each node do its own assignment to increase the size. 

 

3. Simulation Results 

for( i=0; i<NUM_KEYS; i++ ) 

       bucket_size[key_array[i] >> shift]++; 

for( i=0; i<NUM_KEYS; i++ ) 

{ 

       key = key_array[i]; 

       key_buff1[bucket_ptrs[key >> shift]++] = key; 

} 

for( i=0; i<j; i++ ) 

       key_buff_ptr[key_buff2[i]]++; 



I test my program w/ or w/o CUDA optimization using different configurations of the benchmark. 

CLASS A, B and C are all tested with NPROCS varies as 2, 4 and 8. With class B and C, the 

total running time seems to be quite different. With CUDA support, it runs much faster than 

before. Here are the gprof outcomes of all the combinations. 

 

Config % time of rank 

 (w/ | w/o CUDA) 

absolute time of rank 

 (w/ | w/o CUDA) 

overall time of IS 

 (w | w/o CUDA) 

Rank 

Speedup 

Overall 

Speedup 

A/2 0.71 34.72 0.01 0.75 1.41 2.16 75 1.53 

A/4 0.81 24.67 0.01 0.37 1.23 1.5 37 1.22 

A/8 1.06 19.79 0.01 0.19 0.94 0.96 19 1.02 

B/2 1.48 37.05 0.08 3.19 5.4 8.61 39.88 1.59 

B/4 1.3 23.87 0.06 1.58 4.63 6.62 26.33 1.42 

B/8 0.78 28.53 0.02 0.89 2.58 3.12 44.5 1.39 

C/2 0 39.08 0 15.32 16.95 39.2 N/A 2.31 

C/4 0.54 34.71 0.01 6.82 8.18 19.65 682 2.4 

C/8 1.57 19.94 0.19 3.68 12.08 18.46 19.37 1.53 

From the results shown in the table above, GPU significantly improve the performance of 

rank function, with speedup even high as 682 for C/4. The overall performance remains 

similar because most of the time consumed in the program relies on the randlc(generating 

random numbers) and MPI routines. The first chart below is the comparison between rank 

w/ and w/o CUDA support. 

 

 

Figure 1 runtime of rank() w/ and w/o CUDA 

0

2

4

6

8

10

12

14

16

18

CLASS A CLASS B CLASS C

PROCS 2, w/ CUDA

PROCS 2, w/o CUDA

PROCS 4, w/ CUDA

PROCS 4, wo/ CUDA

PROCS 8, w/ CUDA

PROCS 8, w/o CUDA



The second chart is about the overall speedup of IS. 

 

Figure 2 runtime of IS w/ and w/o CUDA 
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