
CSC 548 Project: Memory Trace Compression using

Extended PRSDs – Report 2

Milestones

Task Status Previous

Estimated

Completion

Date

Estimated

Completion

Date

Generation of memory trace Completed - -

Generating RSDs Completed - -

Detecting loops and Generating EPRSDs for

individual threads

Completed Nov 1 Nov 2

Change memory allocation scheme, remove

compare function, add new template

parameters

In Progress <new addition> Nov 15

Merging EPRSDs across threads using MPI

program

Pending Nov 8 Nov 20

Testing of Memory trace compression tool Pending Nov 15 Nov 23

Final Report Pending Nov 22 Nov 25

Problems

A template library is being developed to compress memory traces. There are some

modifications required in the template library design as follows.

1. EPRSD Compare function was stored as a function pointer. There was a lot of function

call overhead each time EPRSD comparison was made.

Solution: This is being changed to be an inline static method inside the MATCH class.

Inlining this function helps to avoid function call overhead.

2. Signature (common part of EPRSD) comparison was done by user whereas it should be

handled by the template library.

Solution: Added function to template library so that signature comparison is done

internally and user is allowed to compare only the user-defined part of EPRSD. This

comparison is optional and user can simply return TRUE if nothing needs to be

compared in user-defined part. Both common part comparison and user-defined part

comparison should hold TRUE for a matching EPRSD.

3. EPRSDCompressor class needs to use classes for matching and merging operations.

Solution: Two additional template parameters are added to EPRSDCompressor class to

support match and merge functionality. A class called MATCH implements an EPRSD

matching/compare function. MERGE class implements a callback method used to notify

user of the merge operations. Both of these functions are static and inline.

4. Memory allocation burden was on the user side. User needs to manage allocation and

release of memory which is cumbersome.

Solution: User passes the memory trace data to template library which in turn allocates

memory dynamically and copies the user data. Template library takes care of releasing

the memory when EPRSDs are merged or written to file.

Project Web page
http://www4.ncsu.edu/~sbudanu/CSC548_Project/

References
[1] P. Ratn, F. Mueller, Bronis R. de Supinski, Michael Noeth and M.Schulz, ScalaTrace: Scalable Compression and Replay of

Communication Traces for High Performance Computing , Journal of Parallel and Distributed Computing, accepted Sep

2008, pages 1-14.

[2] Prasun Ratn, M.S. Thesis, Preserving Time in Large-Scale Communication Traces , North Carolina State University, Aug

2008.

[3] J. Marathe F. Mueller, T. Mohan, S. McKee, B. de Supinski, A.Yoo, METRIC: Memory Tracing via Dynamic Binary

Rewriting to Identify Cache Inefficiencies, ACM Transactions on Programming Languages, Vol. 29, No. 2, Apr 2007, pages 1-

36.

[4] M. Noeth and F. Mueller and M. Schulz and B. de Supinski Scalable Compression and Replay of Communication Traces in

Massively Parallel Environments, P=ac2 Conference, IBM T.J. Watson, Oct 2006.

[5] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee and A. Yoo METRIC: Tracking Down Inefficiencies in the

Memory Hierarchy via Binary Rewriting, International Symposium on Code Generation and Optimization, Mar 2003, pages

289-300.

[6] Pin binary instrumentation tool - http://www.pintool.org

