
1

Memory Trace Compression, Replay and
Extrapolation for SPMD Systems using

Extended PRSDs
Sandeep Budanur Ramanna, North Carolina State University, sbudanu@ncsu.edu

Dr.Frank Mueller, North Carolina State University, mueller@cs.ncsu.edu

Abstract—Analyzing the memory traces of multithreaded
programs is a cumbersome and expensive process due to
large trace size, program complexity and long running
times. Though many binary instrumentation tools gener-
ate memory traces, they either gather statistical informa-
tion with loss of details or generate large trace files that are
difficult to handle. We propose an approach that provides
near constant size memory traces irrespective of the num-
ber of threads involved while preserving the memory access
details along with order in which memory accesses are done.
The proposed scheme also groups the memory accesses with
in a loop to a single entity called Extended Power Regular
Section Descriptor (EPRSD) which is an enhancement over
PRSD concept. We propose bi-level compression scheme
based on memory access pattern and thread identifiers that
are capable of extracting application’s memory access struc-
ture. We further propose a replay mechanism for the traces
generated by our approach and discuss results of our im-
plementation on X86-64bit architecture. We propose an
extrapolation mechanism as the next step which pinpoints
the scalability issues. Considering all the above features
makes EPRSD mechanism a novel approach for memory
trace compression and replay.

I. Introduction

SPMD (Single Process Multiple Data) systems have
multiple processors executing multiple threads of a sin-

gle process have complex memory access pattern and re-
sult in large amount of memory traces. The effective use
of multiprocessors requires efficient memory access across
threads. To analyze the memory access pattern of threads,
tools are required. Most of the tools produce a large dump
of memory trace which is difficult to handle. Such traces
are not useful for analysis and are too large to scale well
along with the problem size. Some tools provide only sta-
tistical information of memory accesses in order to reduce
trace size but are lossy and hardly useful for scalability
analysis.

We propose an innovative approach that produces loss-
less near-constant size memory traces that is highly scal-
able. This approach is based on the PRSD abstrac-
tions but more fine-grained and hence called Extended
PRSDs(EPRSDs). EPRSDs preserve the order of mem-
ory references and generalize the memory access pattern
across threads and loop dependencies. Our tool extracts
complete memory traces and that are orders of magni-
tude smaller than the conventional memory traces, near-
constant in size irrespective of the problem size. Figure-1
shows the overview of our EPRSD based memory trace
compression tool.

Figure 1. Block diagram of Memory Trace compressor tool

We rely on the binary instrumentation tool to gener-
ate memory traces of the application. This instrumenta-
tion tool has the logic to filter application specific memory
traces. The output from the binary instrumentation tool is
fed into the compressor module which runs parallely across
several nodes. Each node generates the EPRSDs for a sin-
gle thread and pass the EPRSDs to another node for merg-
ing based on thread identifiers and memory access pattern
of the individual EPRSDs. This results in order preserv-
ing, lossless and near-constant size memory traces which
can be used for replay and extrapolation. Our replay tool
verifies the correctness of our compression scheme and can
aid in the analysis of problem scaling.

The following content explains the individual compo-
nents involved in the memory trace compression tool in
detail.

II. Instrumentation

Our memory trace compression tool makes use of a freely
available binary instrumentation tool to generate memory
traces of load and store instructions. We have used In-
tel’s PIN tool for binary instrumentation to generate mem-
ory traces dynamically. This trace consists of type of in-
struction, accessed memory address, instruction pointer,



2

stack frame pointer (base pointer) and signature. During
trace generation a filter is used to separate application spe-
cific instructions from system related instructions. This is
achieved by extracting the range of addresses when the ap-
plication image is loaded. Instructions only within this ad-
dress range are included in trace generation. Instructions
related to initialization of stack and registers are ignored
as they are not application specific and not useful for scal-
ability analysis. We further plan to incorporate the ability
to filter instructions when dynamically linked libraries are
involved. This trace is input to the compressor module
which constructs EPRSDs to compress the traces.

III. Trace Compression

Memory traces are compressed based on two criteria.
Fist one is intra-task compression based on starting ad-
dress and stride within a thread. Second one is inter-
task compression based on thread identifiers having similar
memory access pattern. The latter is sub-divided into iden-
tifying multiple threads accessing same memory location
and multiple threads accessing different memory locations
but with a constant stride between them. PRSDs address
the former scenario and EPRSDs address the latter.

We achieve intra-task compression by extending the con-
cept of representing single loops using ’Regular Section De-
scriptors’ (RSDs) to express load and store instructions
nested in loops in constant-size. We represent an RSD
as <start address, stride, length, type >, where length
indicates the loop count, stride indicates the distance be-
tween the memory accesses of each iteration. We use Power
RSDs (PRSDs) to represent recursive RSDs nested in mul-
tiple loops. PRSDs represent RSDs or PRSDs themselves
as memory accesses to express nested loops as nested lists
and sequence of loops as sequence of lists. For example,
the tuple RSD1:<0x1234ABCD, 4, 1000, LD>represent
1000 load instructions starting with address 0x1234ABCD
with a stride of 4 bytes and PRSD1:<0x11112222, 8, 100,
ST, RSD1>represents 100 occurrences of store instructions
starting with address 0x11112222 with a stride of 8 bytes
followed by 100 occurrences of the loop denoted by RSD1.
Inter-task compression is achieved if same patterns are
found in multiple threads and thus thread-ids form a part
of the PRSDs which assist in replaying of memory traces.

EPRSDs are built on the PRSD mechanism in which or-
der of instructions is preserved and similar memory access
patterns across multiple threads are captured as a function
of thread-id. Thus an EPRSD consist of thread-id based
offset to the base address along with the other entries of
PRSD. EPRSD is represented as a 5-tuple against the 4-
tuple representation of PRSD.

Below is a comparison of three sequential instructions
whose range of addresses depend on the ids of the threads
operating on them. In such a scenario the PRSDs and
EPRSDs are represented as follows.
C[i] =A[i] +B[i]
PRSD1 :< (base addr),(stride, length),LDA >
PRSD2 :< (base addr),(stride, length),LDB >
PRSD3 :< (base addr),(stride, length),STC >

EPRSD1 :< (base addr,thread id based offset),
(stride, length),LDA,LDB ,STC >

Clearly the EPRSDs preserve the order of instructions
and the base addresses are represented as a function of
thread-id which is absent in PRSD. Also fewer EPRSDs
are required than PRSDs to represent a given set of in-
structions in a loop. Still, EPRSD approach results in
more computational time than PRSD approach.

A. Intra-task Compression

The compression algorithm involves finding the repeti-
tive patterns in the input memory trace and creating an
EPRSD when repetitions are found. To find the repetitive
patterns, each memory reference is compared with a set
of previous memory references. The extent to which this
comparison is made depends on the size of the window
used to buffer the memory references. Bigger the window
size and compression achieved is higher and vice versa.
If window size is not large enough to identify repetitions,
then compression achieved by EPRSDs is similar to that of
PRSDs without preserving order. To identify a loop of N
memory references, a window size of atleast 2N should be
used to achieve maximum compression. After creating an
EPRSD, it is compared with the existing set of EPRSDs.
If a match is found existing EPRSD’s length is updated
otherwise new EPRSD entry is created. For compression
to occur EPRSDs must belong to the same thread and have
identical pattern. Intra-task compression continues till the
application keeps running. After the application completes
execution, inter-task memory trace compression begins.

Each instruction needs to be identified uniquely. So a
unique signature is computed for each instruction by per-
forming a stackwalk. A series of return addresses and
program counter value is XORed to compute the unique
signature. This signature should match while comparing
EPRSDs for merging to take place. The logic for comput-
ing the signature is included in the instrumentation tool
discussed earlier.

Intra-task compression is distributed across multiple
processes and each process performs the intra-task com-
pression of a single thread. If window size is 2N, then
θ(N2) comparisons are made in case of EPRSDs apart
from table lookup and file I/O time. In case of PRSDs,
only table lookup and file I/O time is involved as pattern
matching is not involved. PRSD scenario can be consid-
ered as an EPRSD scenario with window size, N = 1. The
algorithm used for intra-task compression is given as fol-
lows.

AddToWindow(WINDOW* window, TRACE* new_trace_node)
{
FRESH_MATCH:
if(l_match_begin == NULL)//no match found yet
{
match = window->getMatch(new_trace_node);
if(match)//match found
{
if(l_match_begin == NULL)



: 3

{
l_match_begin = match;

}
l_match_end = match;

//add to window and store the postition
//as right window’s starting point
window->addTail(new_trace_node);
if(r_match_begin == NULL)
{
r_match_begin = window->tail;

}
r_match_end = window->tail;

}
else
{
//add to window
window->addTail(new_trace_node);

}

}
else//some match was found earlier
{
if(l_match_end->next != r_match_begin)
{
//matching continues
if((l_match_end->next)->refId ==

new_trace_node->refId)
{
l_match_end = l_match_end->next;
window->addTail(new_trace_node);
r_match_end = window->tail;

}
else //matching stops
{
//reset the begin and end points of
//l and r windows
l_match_begin = l_match_end = NULL;
r_match_begin = r_match_end = NULL;
//use the new trace node to match
goto FRESH_MATCH;

}

}
else//l_match_end is just before r_match_begin
{
//Pattern Matched
//add to EPRSD table
addWindowToEPRSDTable(window);
//reset the begin and end points of
//l and r windows
l_match_begin = l_match_end = NULL;
r_match_begin = r_match_end = NULL;
window->head = window->tail = NULL;
window->count = 0;
goto FRESH_MATCH;
}
}

return;
}

B. Inter-task compression

After the intra-task compression is over, each process
sends the EPRSDs to another process for merging. This
communication pattern is designed such that the process
with the highest rank completes the final merging. This
communication pattern is depicted in Figure-2 when eight
processes(N = 8) are involved in the intra-task compres-
sion. The direction of the arrow shows the direction of
EPRSD transmission. Similar pattern is applicable for
higher values N. Each EPRSD list is scanned for matching
EPRSDs of different threads with the same signature and
dimension. If regular memory access patterns are found
then base address for each EPRSD is represented as a func-
tion of thread-id. A binary radix tree approach is used to
merge the individual EPRSDs and hence the merging of
each EPRSD list takes O(lgN) time where N is the num-
ber of threads in application (or N processes each handling
intra-task compression). This process repeats for all the
EPRSDs in the compressor list. If there are M EPRSDs
(M unique signatures)the whole inter-task compression al-
gorithm runs in O(MlgN) time.

Figure 2. EPRSD exchange pattern between processes

This stage also involves determining the memory ac-
cess pattern across different threads and representing the
base address of each EPRSD as a function of thread-id.
For example, EPRSD1 : <(1000,400), (100,4),LDA> de-
notes 100 occurrences of load A instruction with stride
4 and base address = (1000+400*thread id) such that
0 ≤ thread id ≤ N − 1. Additionally, this stage involves
computing and storing the offset values for the local vari-
ables, storing the stack pointers of each thread in a table
to assist during replay.

C. EPRSD Template library

We have developed a C++ template library to facil-
itate the rapid development of trace compression tools
using EPRSDs for high performance applications. Users
can derive classes and/or define their own data types
to store trace data and compress them by using just
a couple of objects. C++ Classes are designed for for



4

both intra and inter-task compression. Most impor-
tantly they are independent of any message passing APIs.
Users can use this library in combination of any mes-
sage passing API library. We have provided a sam-
ple MPI implementation of intra and inter task com-
pression schemes. Code is available for download from
http : //www4.ncsu.edu/ sbudanu/CSC548P roject/

D. Results

Table-I shows the size of the original trace files and
EPRSD compressed trace files for a matrix multiplication
program operating on 8x8 matrices with various number of
threads. Table-II shows the size of the original trace files
and EPRSD compressed trace files for a matrix multipli-
cation program operating on 16x16 matrices with various
number of threads. Figure 3 and Figure 4 show the scala-
bility of EPRSD approach for different concurrencies and
problem sizes. It should be noted that the sclaes are loga-
rithmic. The raw trace file size increass exponentially with
the no. of threads and the EPRSD trace file size remains
constant for all thread and problem sizes. By looking at
the results we can conclude that the space savings of the
EPRSD compression scheme is exponential and resulting
traces are highly scalable.

TABLE I

Original vs Compressed trace size of a 8x8 matrix

multiplication program for various no. of threads

No. of
Threads

Original Trace
Size (Bytes)

Compressed
Trace Size
(Bytes)

1 1170160 39691
4 4664566 39691
8 9323788 39692
32 37279480 39744

TABLE II

Original vs Compressed trace size of a 16x16 matrix

multiplication program for various no. of threads

No. of
Threads

Original Trace
Size (Bytes)

Compressed
Trace Size
(Bytes)

1 8972536 39766
4 35874088 39766
8 71742797 39767
32 286955558 39819

EPRSD compressed files also contain the loop and
thread dependency information. The number of loop
nesting levels, loop size, loop count, memory ad-
dress length/stride, thread id length/stride and node id
length/stride

Figure 3. EPRSD trace size comparison for 8x8 matrix multiplica-
tion

Figure 4. EPRSD trace size comparison for 16x16 matrix multipli-
cation

IV. Replay of memory traces

We propose to replay the memory traces to execute load
and store instructions in the same order as their structure
and order is preserved in the compressed trace. Replay
happens at run time without the need to decompress the
traces. Thus the application’s memory access behaviour
can be assessed without actually running the application.
The correctness of our compression scheme can be verified
by using the replay engine.

V. Extrapolation for scaling

The compressed memory traces can be analyzed for task
scaling (strong scaling), problem scaling and weak scaling
(task and problem size scaled proportionally). The scal-



: 5

ability problems can be detected easily as they form the
inefficient part of the compressed trace.

We propose to extrapolate larger memory traces using
the smaller ones which can be used to (a) replay the larger
memory traces to detect performance bottlenecks empiri-
cally. (b) to determine the constraints on scalability ana-
lytically.

VI. Conclusion

Memory traces of multithreaded applications on SPMD
machines are very large in size and hard to analyze appli-
cation behaviour. The existing memory trace tools either
produce lossless and large trace files which are too big to
store on disk or produce lossy concise traces with only sta-
tistical details.

We present a unique memory tracing framework that
combines the advantages of both the above mentioned trac-
ing tool types. Our tool extracts full memory traces and
represents them in near constant size regardless of the
number of tasks or problem size while preserving the mem-
ory access details along with order in which memory ac-
cesses are done. The proposed scheme also groups the
memory accesses with in a loop to a single entity called Ex-
tended Power Regular Section Descriptor (EPRSD) which
is an enhancement over PRSD concept. We employ ex-
tended power regular section descriptors (EPRSDs) to
achieve compression. Compression is performed at two
levels,(a) Intra-task: using memory address access pattern
within a task. (b) Inter-task: using thread ids to represent
regular memory access patterns across multiple threads.

We also propose a replay mechanism to generate the
memory traces from the compressed trace on the fly with-
out decompressing the trace completely. We present the
extrapolation scheme to analyze scalability problems by
extrapolating larger memory traces from smaller ones and
replaying them.

References

[1] P. Ratn, F. Mueller, Bronis R. de Supinski, Michael Noeth and M.
Schulz, ScalaTrace: Scalable Compression and Replay of Com-
munication Traces for High Performance Computing , Journal
of Parallel and Distributed Computing, accepted Sep 2008, pages
1-14.

[2] Prasun Ratn, M.S. Thesis, Preserving Time in Large-Scale Com-
munication Traces , North Carolina State University, Aug 2008.

[3] J. Marathe F. Mueller, T. Mohan, S. McKee, B. de Supinski, A.
Yoo, METRIC: Memory Tracing via Dynamic Binary Rewriting
to Identify Cache Inefficiencies, ACM Transactions on Program-
ming Languages, Vol. 29, No. 2, Apr 2007, pages 1-36.

[4] M. Noeth and F. Mueller and M. Schulz and B. de Supinski Scal-
able Compression and Replay of Communication Traces in Mas-
sively Parallel Environments, P=ac2 Conference, IBM T.J. Wat-
son, Oct 2006.

[5] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. Mc-
Kee and A. Yoo METRIC: Tracking Down Inefficiencies in the
Memory Hierarchy via Binary Rewriting, International Sympo-
sium on Code Generation and Optimization, Mar 2003, pages
289-300.

[6] Pin binary instrumentation tool. http://www.pintool.org/


