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Project Description: 

The goal of the project is to analyze the benefits of hardware acceleration using CUDA in an 

MPI environment. We used 3 different NAS Parallel Benchmarks for the analysis. The 

benchmarks chosen are MG, FT and CG.  

Tools Used: 

Gprof: Gprof is a profiling program which collects and arranges statistics on your 

programs.Basically, it looks into each of your functions and inserts code at the head and tail 

of each one to collect timing information. We found out the bottleneck function using this 

and then tried to perform optimizations on that.  

pgf95: The PGI 9.0 release includes the PGI Accelerator™ FORTRAN and C99 compilers 

supporting x64+NVIDIA Linux systems. This has option for specifying directives similar to 

OpenMP which can be used for acceleration. The PGI Accelerator compilers automatically 

analyze whole program structure and data, split portions of the application between the 

x64 CPU and GPU as specified by user directives, define and generate an optimized 

mapping of loops to automatically use the parallel cores, hardware threading capabilities 

and SIMD vector capabilities of modern GPUs. 

In addition to the accelerator capability this can be used as a fortran Cuda compiler. 

Metrics for evaluation: We are using the Mops/s and total execution time for the 

comparison of the optimization applied to that of the original code. Once we move the 

hotspot loop to cuda kernel Gprof doestn’t shows much time with the bottleneck function. 

This may be because it does not record the cuda kernel time. 



Optimization Approach and Results: 

MG: 

Introduction: 

The gProf analysis on MG showed the bottleneck in the resid function. On analysis of the 

function revealed these nested loops: 

 

So we focused on converting this part of code to CUDA. We used PGI directives for 

accelerating this section of code.  

Approach, Issues and Results: 

1)The arrays u1 and u2 are shared by the 2 inner loops, so when we applied the directives 

we got the error saying that the section cannot be parallelized as the array is shared. So we 

merged these 2 inner loops to the following: 

do i3=2, n3-1 
  do i2=2, n2-1 
     do i1=2,n1-1 
       u3 = u(i1-1,i2-1,i3) + u(i1-1,i2+1,i3) + u(i1-1,i2,i3-1) + u(i1-1,i2,i3+1) 
       u4 = u(i1+1,i2-1,i3) + u(i1+1,i2+1,i3) + u(i1+1,i2,i3-1) + u(i1+1,i2,i3+1) 
       u5 = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1) + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1) 
       u6 = u(i1-1,i2-1,i3-1) + u(i1-1,i2+1,i3-1) + u(i1-1,i2-1,i3+1) + u(i1-1,i2+1,i3+1) 
       u7 = u(i1+1,i2-1,i3-1) + u(i1+1,i2+1,i3-1) + u(i1+1,i2-1,i3+1) + u(i1+1,i2+1,i3+1) 
       r(i1,i2,i3) = v(i1,i2,i3) - a(0) * u(i1,i2,i3) - a(2) * (u5 + u3 + u4) - a(3) * (u6 + u7) 



     enddo 
  enddo 
enddo 

 

Instead of calculating the array values u1 and u2 for all i and then calculating r, we stored 

u1(i-1), u1(i+1), u2(i), u2(i-1), u2(i+1)(which are used in the calculation of the r array) into 

local variables u3, u4, u5, u6, u7 and calculated r for each i. Even thought this meant extra 

calculations this is acceptable in this case as the GPGPU is good in delivering the associated 

performance involved.  

The final code which was used to test the performance was given below with the directives: 

 

We had also replaced the array a by the variables u8, u9, u10 as the array ‘a’ was giving 

"Unaligned memory access" error. 

The performance of this modified code was a little slower than the main code when it was 

run on 1 processor with class B input. We figured out that the operation involves copying 

the large 3d arrays u, v and copying out a large array r. The large memory copy operations 



took up all the time. This was also evident when we tried to run class C input in a single 

processor, when we got a CUDA memalloc error. 

So we tried the running the code for a larger number of processors, so that the input array 

might be divided among multiple processors and matrix to be copied from each processor 

to its GPGPU will be reduced and the performance might be improved. We ran MG with 

class C for 8 processors, where we could notice a little performance improvement. The 

results are given below: 

 

Results for Normal code: 

MG Benchmark Completed. 
Class           =                        C 
Size            =            512x 512x 512 
Iterations      =                       20 
Time in seconds =                    84.35 
Total processes =                        8 
Compiled procs  =                        8 
Mop/s total     =                  1845.76 
Mop/s/process   =                   230.72 
Operation type  =           floating point 
Verification    =               SUCCESSFUL 
Version         =                      3.3 
Compile date    =              06 Dec 2009 

 

Results for CUDA code: 

MG Benchmark Completed. 
Class           =                        C 
Size            =            512x 512x 512 
Iterations      =                       20 
Time in seconds =                    81.41 
Total processes =                        8 
Compiled procs  =                        8 
Mop/s total     =                  1912.45 
Mop/s/process   =                   239.06 
Operation type  =           floating point 
Verification    =               SUCCESSFUL 
Version         =                      3.3 
Compile date    =              06 Dec 2009 

 

2) Since there are heavy memory operations involved, we tried improving the performance 

by the use of blocking. This actually improved the performance for a single processor too. 

The changed code for blocking is posted below: 



 

do i3block=2, n3-1, BLOCK2 
  do i2block=2, n2-1, BLOCK3 
    do i3=i3block,min(i3block+BLOCK3-1,n3-1) 
      do i2=i2block,min(i2block+BLOCK2-1,n2-1) 
        do i1=2,n1-1 
          u3 = u(i1-1,i2-1,i3) + u(i1-1,i2+1,i3) + u(i1-1,i2,i3-1) + u(i1-1,i2,i3+1) 
          u4 = u(i1+1,i2-1,i3) + u(i1+1,i2+1,i3) + u(i1+1,i2,i3-1) + u(i1+1,i2,i3+1) 
          u5 = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1) + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1) 
          u6 = u(i1-1,i2-1,i3-1) + u(i1-1,i2+1,i3-1) + u(i1-1,i2-1,i3+1) + u(i1-1,i2+1,i3+1) 
          u7 = u(i1+1,i2-1,i3-1) + u(i1+1,i2+1,i3-1) + u(i1+1,i2-1,i3+1) + u(i1+1,i2+1,i3+1) 
          r(i1,i2,i3) = v(i1,i2,i3) - u8 * u(i1,i2,i3) - u9 * ( u5 + u3 + u4 ) - u10 * ( u6 + u7 ) 
        enddo 
      enddo 
    enddo 
  enddo 
enddo 

[Referred the paper "Optimizing the NPB MG benchmark for multi-core AMD Opteron 

microprocessors" by Stephen Whalen, Cray, Inc.] 

There was an improvement in performance for even a single processor with class B input. 

The results are given below: 

Original Code: 

MG Benchmark Completed. 
Class           =                        B 
Size            =            256x 256x 256 
Iterations      =                       20 
Time in seconds =                    29.90 
Total processes =                        1 
Compiled procs  =                        1 
Mop/s total     =                   650.92 
Mop/s/process   =                   650.92 
Operation type  =           floating point 
Verification    =               SUCCESSFUL 
Version         =                      3.3 
Compile date    =              06 Dec 2009 

 

Modified code with Blocking: 

MG Benchmark Completed. 
Class           =                        B 
Size            =            256x 256x 256 
Iterations      =                       20 
Time in seconds =                    27.11 
Total processes =                        1 



Compiled procs  =                        1 
Mop/s total     =                   717.89 
Mop/s/process   =                   717.89 
Operation type  =           floating point 
Verification    =               SUCCESSFUL 
Version         =                      3.3 
Compile date    =              06 Dec 2009 

 

3) So the next step was to combine blocking with CUDA. But this did not work as expected. 

The accelerator directives were simply ignored when applied on the blocked version of the 

loop as the kernel could not be split.  

We also tried making the first 2 loops, which take care of blocking factor run in the host by 

using the directive “!$acc do host” and then had the normal "!$acc do" directive for the 

inner loops, but the PGI compiler stalled when the input was given. 

Open Issues: 

Instead of copying the entire array, we could do so in blocks and try to further improve the 

performance. Since large memory copy is involved before computations, much of 

performance could not be achieved from the GPGPU. 

 

 

 

 

 

 

 

 

 

 

 

 



FT: 

Introduction 

We started off the project by analyzing the gprof output from the NAS PB FT code. We were able to 

find out the major hot spots in code. The interim report showed the result and the main functions 

which may be optimized where fftz2, cfftz and transpose2_local. We used PGI compiler for 

optimizing the FT code on CUDA target. 

Approach, Issues and Resolution 

• fftz was the major function which caused bottleneck. There were 100s of thousands 
of call made to fftz2 and hence transforming the CUDA will cause too many 
overheads due to large number of kernel invocations. We tried expanding the 
function by inline expansion of fftz. But the results were not fruitful.  

  

• cffts2 and cffts3 had too many library calls which prevented the transformation of 
the code to CUDA. 

  

• Another function which showed bottleneck was cfftz. This also had the same 
problem as fftz2, too many invocations.  

  

• We tried applying PGI accelerator directives in all the above mentioned functions. 
But, PGI Accelerator directive doesn't have any support for all the variables used in 
the benchmark code, for example "complex" data types. 

 
 
Due to the reasons mentioned above, we tried to optimized the function transpose2_local. Due to the 

above mentioned limitations of PGI accelerator directives, we did the transformation by writing 

Fortran CUDA code. PGI provide us the compiler to build CUDA Fortran code. The only dependency 

issue is that PGI compiler for CUDA did not support few FORTRAN keywords. Hence we had to 

change those keywords and data types to make the code work. The file should have ".cuf" extension 

also. 

 

Below is the code loop which we tried to optimize 



 

 

Below is the kernel module corresponding to the above loop 

 



Below is the code snippet which invokes the above kernel 

 

 

 

Results for Normal Code 
FT Benchmark Completed. 
Class = A 
Size = 256x 256x 128 
Iterations = 6 
Time in seconds = 13.37 
Total processes = 1 
Compiled procs = 1 
Mop/s total = 533.72 
Mop/s/process = 533.72 
Operation type = floating point 
Verification = SUCCESSFUL 
Version = 3.3 

Compile date = 05 Dec 2009 
 
 
 
 
Results for CUDA 
FT Benchmark Completed. 
Class = A 
Size = 256x 256x 128 
Iterations = 6 
Time in seconds = 13.43 



Total processes = 1 
Compiled procs = 1 
Mop/s total = 531.39 
Mop/s/process = 531.39 
Operation type = floating point 
Verification = SUCCESSFUL 
Version = 3.3 
Compile date = 05 Dec 2009 
 
The results show slight decrease in the performance though both show very similar results. 
Our assumption is that if we increase the problem size we can get an improvement as 
happened in MG and CG. But we could not run CLASS=B for NPROC=1 . It looks like we need 
more than 1 processors for CLASS=B for FT. But inorder to run in more than one processor 
we need to change the kernel subroutine so as to take into account task id also.  
 
Open Issues 

Make necessary changes in the kernel subroutine so as check the results for bigger problem 

size and more number of processors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CG 

Introduction 

CG approximates the largest eigenvalue of a sparse, symmetric, positive definite matrix, 

using inverse iteration[2]. This algorithm comes up with an eigenvalue estimate for a 

number of iterations(“outer iterations”, different values depending on the CLASS) using 25 

iterations of the conjugate gradient method[2].  

Approach, Issues and Results 

Gprof gave the bottleneck function as conj_grad. From the implementation details we see 

that it is the matrix-vector multiplication that is the major bottleneck in this particular 

function[1][2]. Below is the function which we need to parallelize. We used accelerator 

directive to optimize. 

 

 

• Issue with copying p: We added the compiler directive around the loop as below 

 

It gave compilation error as below. 



 

Defining the array size for p solved the issue. 

• Issue with privatizing “sum”:  variable: Then there was another compilation error 

as below. It got resolved by privatizing sum variable. 

 

Once these issues were resolved we ran this for CLASS=B and CLASS C. Below are the 

results. The accelerator directives showed a clear improvement in the execution time. For 

CLASS=C the improvement was almost 2X with NPROCS=1. 

CLASS NPROCS Problem 

Size 

Mops/s(per 

processor 

)without 

directives 

Mops/s (per 

processor)with 

directives 

Total 

Time in 

seconds 

without 

directives 

Total Time in 

seconds(with 

directives) 

B 1 75000 110.74 150.22 494.01 364.20 

C 1 150000 80.44 151.40 1782.02 946.80 

C 2 150000 82.52 106.72 868.57 671.63 

 

We see that as the problem size increases we get much improvement. 

Open Issues: As the number of processors being used increase there is a decrease in the 

performance achieved. As seen with the CLASS=C, with NPROCS=1 there was a 2X 

improvement with hardware acceleration. But with NPROCS=2 we don’t get 2X 

improvement. 

IS: 

First we tried optimization in IS. But the operations in IS are all memory intensive. There 

are very less computation involved. The only function which is comparatively computation 

intensive is the randlc, the random number generator. But there are so many function calls 



for this. If we change this calculation to Cuda kernel, cost of kernel invocation will nullify 

the effect of any improvement we achieve.  

Inorder to try out whether any optimization is achieved we tried applying accelerator 

directives to many different loop. We could not apply because of 2 reasons 

• There was too much dependency in the loop iterations which made parallelization 

using directives impossible. 

• There were some computations involving INT_TYPE2 which maps to type long, 

which is currently not supported by PGI accelerator. 

Conclusion: 

The above analysis shows that we are able to achieve improvement in terms of execution 

time and Mops/s with hardware acceleration. We get better performance improvement as 

we increase the problem size. 

 

 

TASK DISTRIBUTION: 

Task Owner Task 

Group Task 
Analysis of F2C-ACC, f2c, installation of pgi compiler environment 

settings, added compiler directive for acceleration, compilation 
using the pgi accelerator directives. 

Allen Pradeep Xavier 

Performance evaluation of MG, Identifying the bottleneck function, 
performance evaluation after adding compiler directive and 

blocking Web page updation, Helping in solving errors in FT,CG 
benchmarks 

Anitta Jose 

Performance evaluation of IS, Identifying the bottleneck function, 
Understanding the IS implementation, Identifying bottleneck in CG 
benchmark, Performance evaluation for CG after adding compiler 

directives 

Sreekanth Mavila 

Performance evaluation of FT, Identifying the bottleneck function, 
Converting all the function calls in the hotspot function to inline 

functions. Writing cuda fortran kernel, Performance evaluation with 
cuda fortran kernel, Helping in solving errors in MG,CG benchmarks 
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