
1

An MPI failure detector over PMPI1

Donghoon Kim

Department of Computer Science, North Carolina State University

Raleigh, NC, USA

Email : {dkim2}@ncsu.edu

Abstract

Fault Detectors are valuable services which provide information about process failures in large-

scale parallel systems. Previous many studies suggest guidelines for the implementation of a fault

detector. However, a practical approach to implementation is another challenge due to various parallel

system environments of both hardware and software. This study explains that Fault detector is able to be

transparent, scalable, and portable. The experimental results show that Fault Detector can be embedded

to any MPI application with negligible overhead.

1. Introduction

Modern scientific applications on Massive Parallel Processing Systems have execution times

ranging from day to months. These long-running MPI applications on clusters are prone to node or

network failures as the systems scale[1]. The MPI application may have no progress in the case of node or

network failures if such an application needs to exchange its computation results through the

communication. Furthermore, the recovery overhead would be increased unless the fault detection

services provide timely detection. On the other hand, the overhead of fault detection would be increased

as the frequency of fault detection increases for monitoring accurate failures. Thus, the Fault Detector still

provides valuable services which are system management, load balancing, and replication as well as

failure detections.

Previous many studies suggest guidelines of theoretical methodology for the implementation of

Fault Detection services. However, a practical approach to implementation is another matter because

various parallel system environments of both hardware and software yield more complicated other issues

due to the property of unreliable failure detectors, that is, completeness and accuracy[2].

1
 The purpose of this paper is to complete CSC548 Parallel Systems - Section 001 supervised by Dr.

Frank Mueller in Computer Science, North Carolina State University, Fall 2009.

2

Assume that the system model provides certain temporal guarantees on communication or

computation called partially synchronous [3], the Fault Detector (FD) is able to utilize time based scheme,

namely, ping-ack based implementation with the following proprieties :

• Transparency – The FD is launched in MPI_Init routine with a MPI profiling interface, which

creates FD threads. The FD runs independently with a unique communicator different from an

application program. When MPI application program pass through MPI_Init, FD is also running

on each processes without additional touch.

• Scalability – The FD sends a check message sporadically at any time when an application

program has a routine to communicate. It would not lead to high communication overhead

compared with the frequency of periodic check message since the FD at each node avoids

redundant check messages for a defined time period.

• Portability – MPI application can be compiled with FD if the user just adds FD source code in the

same directory before compiling MPI application source codes.

In this paper, I implement the Fault Detector over MPI profiling layer to detect a failure of MPI

application or network. The experimental results show that the Fault Detector has the above proprieties

with the negligible overhead since I use sporadic communication approach.

The rest of this paper is structured as follows. Section 2 describes the design of Fault Detector

and practical methods. Section 3 discusses implementation issues. Section 4 is experimental framework.

Section 5 demonstrates the experimental results and analyzes the output. Section 6 reviews the related

work of Fault Detection service. Section 7 is the conclusion and the future direction of this work.

2. Design

Figure 1 shows the diagram of the fault detector for sporadic communication which I have

implemented so far. The arrows present the function call from MPI applications to Fault Detector.

Suppose that the MPI application such as NAS Parallel Benchmark (NAS PB) runs on Massive parallel

processing (MPP) environment. As the most MPI tools utilize, MPI profiling layer (PMPI) intercepts MPI

calls during application execution. When MPI_Init is called in the application, Fault Detector (FD) is also

launched since the code for calling FD is inserted in MPI_Init. FD code has been implemented with C

code while some of NAS PB has been written by Fortran code. Thus, the Wrapper Function (WF) is for

the application written in Fortran at which WF links MPI functions of the application to PMPI.

Figure 1

Upon running FD, FD executes its own separate routine independent from the

new communicator, FD_COMM

execution among FDs on MPP environment

Whenever MPI communication routines (e.g. MPI_Send or MPI_Isend) in the

are called, the corresponding PMPI routines are also executed. Each PMPI routine has three steps such as

pre-processing, PMPI function call and

registers a destination node with current time in Queue and sends a signal to FD sender in case of waiting

for a signal since Queue is empty. PMPI function call executes normal function like PMPI_S

application execution. Post-processing deletes the destination node registered in Queue if returned

SUCCESS in PMPI_Send. FD manages the status of neighbor nodes with Queue which is implemented

using a doubly liked list with node ID, timestamp,

pthread_create() function which works i

uses two messages, ALIVE and ACK. ALIVE message is to check

not. ACK message is to verify from

two nodes with communication and computation time.

failed if no ACK message is received in correspondence to ALIVE message.

into MPI environment. The following is the more detailed description of both FD sender and FD receiver.

• FD sender : It is supposed to send the ALIVE message unless Que

ALIVE message, FD sender

delay time passes the timestamp or not. The purpose of the delay time is not to make a redundant

3

Figure 1. The Diagram of Fault Detector

executes its own separate routine independent from the

 is used for FD communication routines to provide

xecution among FDs on MPP environment. FD consists of two threads, FD sender and FD receiver.

routines (e.g. MPI_Send or MPI_Isend) in the MPI application program

are called, the corresponding PMPI routines are also executed. Each PMPI routine has three steps such as

processing, PMPI function call and post-processing. As an example of MPI_Send, Pre

registers a destination node with current time in Queue and sends a signal to FD sender in case of waiting

for a signal since Queue is empty. PMPI function call executes normal function like PMPI_S

processing deletes the destination node registered in Queue if returned

SUCCESS in PMPI_Send. FD manages the status of neighbor nodes with Queue which is implemented

using a doubly liked list with node ID, timestamp, check-in and so on. The FD is a thread created by

which works independently side by side with the application program. The FD

uses two messages, ALIVE and ACK. ALIVE message is to check whether a destination node is alive or

not. ACK message is to verify from a destination node. The FD should consider the time delay between

two nodes with communication and computation time. The FD could suspect a destination node to be

failed if no ACK message is received in correspondence to ALIVE message. The FD should be int

The following is the more detailed description of both FD sender and FD receiver.

supposed to send the ALIVE message unless Queue is empty. Before sending

sender checks the timestamp of a destination node in Queue whether the

delay time passes the timestamp or not. The purpose of the delay time is not to make a redundant

executes its own separate routine independent from the application. The

is used for FD communication routines to provide independent

. FD consists of two threads, FD sender and FD receiver.

application program

are called, the corresponding PMPI routines are also executed. Each PMPI routine has three steps such as

processing. As an example of MPI_Send, Pre-processing

registers a destination node with current time in Queue and sends a signal to FD sender in case of waiting

for a signal since Queue is empty. PMPI function call executes normal function like PMPI_Send for the

processing deletes the destination node registered in Queue if returned

SUCCESS in PMPI_Send. FD manages the status of neighbor nodes with Queue which is implemented

The FD is a thread created by

the application program. The FD

a destination node is alive or

a destination node. The FD should consider the time delay between

he FD could suspect a destination node to be

he FD should be integrated

The following is the more detailed description of both FD sender and FD receiver.

ue is empty. Before sending

on node in Queue whether the

delay time passes the timestamp or not. The purpose of the delay time is not to make a redundant

4

message. If delay time passes the timestamp, FD sender sends ALIVE message to that destination

node and then flips check-in flag to indicate that FD already sent ALIVE message and is waiting

for ACK message from that node with updated timestamp. When FD rechecks this node for the

next turn, FD sender is able to suspect this node as a node failure if this node still exists in Queue.

FD sender sorts Queue by updated timestamps in ascending order after one cycle.

• FD receiver : It is supposed to receive either ALIVE or ACK message. FD receiver probes

periodically whether a message is arrived or not. On receiving a message, FD receiver takes the

next action according to MPI_TAG. FD receiver replies back ACK message for ALIVE message

while deleting a node ID from Queue for ACK message.

3. Implementation Issues

I have implemented three kinds of FDs depending on algorithms such as periodic all-to-all, and

tree structure and sporadic FD. In this paper, I only show sporadic FD since it is more reasonable and

practical approach regarding the performance.

FD utilizes pthread wait and signal to run continuously. The signals are conveyed to FD sender

whenever MPI communication routines are called. FD sender keeps working as long as Queue has a

destination node. FD sender also checks queue regularly such as every 20ms unless there is a signal.

Queue is updated whenever there is any change such as insert, delete, timestamp update and etc. Queue is

maintained by many internal functions in FD which requires consistent changes so that Queue is the

critical section controlled by pthread lock and unlock.

FD should keep running until MPI applications terminate. FD might make processor keep busy so

that it causes the performance of MPI application to go down. Thus, FD goes to sleep for some time after

one cycle in both FD sender and FD receiver. In this implementation, 20ms is the sleep time.

The CG benchmark is written in Fortran so that WF is called whenever MPI routine executes.

Fortran compilers are different, that is, one of the following function name is used for MPI_Send as an

example, mpi_send_, mpi_send__, MPI_SEND, or MPI_Send. mpi_send_ is used on opt10. The all

arguments are pointer arguments in WF. Furthermore, the ierr argument at the end of the argument list in

Fortran is not used in C because the ierr is an integer and has the same meaning as the return value of the

routine in C.

4. Experimental Framework

 I conducted my performance

dual-core AMD Opteron 265 processors

64 with MPICH2 for FD test[4]. I used 3 nodes as a

5. Experimental Results

 In this section, experimental results show

FD has been tested with the CG in NAS Parallel Benchmark

several implementation issues on several test cases

I make minor changes in PMPI routines removing

However, all the basic tests in the graph

confidence for all cases.

5.1 Performance overhead

 Figure 2 shows the performance

indicates the performance of NPB

presents the number of processes and Y

5

I conducted my performance evaluations on a local cluster. All machines are 2-way SMPs with

ore AMD Opteron 265 processors by a Gigabit Ethernet switch running Fedora Core 5 Linux x86

I used 3 nodes as an experimental cluster for limited resource

this section, experimental results show how FD affects the performance of MPI applications.

D has been tested with the CG in NAS Parallel Benchmark (NPB) suite as a basic test.

several test cases related Queue management by pthread lock & unlock.

PMPI routines removing FD processing codes in case of some issues exists.

in the graph do not have any issue. Thus, the experimental results

formance results of NPB in comparison of NPB with FD

 while FD indicates the performance of NPB with FD code.

presents the number of processes and Y-axis represents the time in seconds in NPB output.

way SMPs with

running Fedora Core 5 Linux x86

resource.

of MPI applications.

suite as a basic test. I still have

by pthread lock & unlock.

in case of some issues exists.

the experimental results ensure the

with FD. Normal in figure

PB with FD code. X-axis

axis represents the time in seconds in NPB output.

Fi

DT and IS in NPB are written in C while the

additional wrapper functions. In DT, right bar (red

execution time in DT is too short and relatively communication time

than computation. However, we can say that there is no ove

significant difference between C and Fortran.

overall performance Overwhelming trend in

between Normal and FD.

5.2 Communication overhead

Another overhead is communication overhead which

MPI communication routine has three steps

destination node in Queue if SUCCESS returne

destination node rarely since a destination node is deleted a

have tested many cases changing time

communication overhead intentionally.

based algorithms such as all-to-all and

should send and receive a signal periodically

Thus, communication overhead in this work

6. Related Work

 In [2], Tushar and Sam classify 8 classes of failure detectors by specifying the compl

accuracy properties and show how to reduce 8 failure detectors to 4 and how to solve consensus for each

class by defining consensus problem

indicates the false positive problem of

6

Figure 2. The performance results with FD

DT and IS in NPB are written in C while the others are written in Fortran so Fortran NPBs call

In DT, right bar (red color) is higher than left (blue color)

is too short and relatively communication time such as round-

e can say that there is no overhead to call wrapper function and

C and Fortran. Three steps in MPI communication routines affect the

Overwhelming trend in Figure 2 indicates that there is no performance

head is communication overhead which is also able to be negligible

MPI communication routine has three steps as I mentioned in Introduction. Post processing is to remove

UCCESS returned. This means that FD may send ALIVE signal to

since a destination node is deleted as soon as it registers in Queue for most cases.

time parameters such as sleep and timedwait in order to make high

communication overhead intentionally. However, it turns out less than 1% even in worst case.

all and tree structure may affect communication overhead because it

periodically every a given time interval until MPI application

in this work is able to be negligible in sporadic FD.

classify 8 classes of failure detectors by specifying the compl

accuracy properties and show how to reduce 8 failure detectors to 4 and how to solve consensus for each

by defining consensus problem. This paper affects many contemporary papers because

problem of many practical systems such as asynchronous system

so Fortran NPBs call

(blue color) bar because the

trip time is higher

tion and there is no

routines affect the

performance difference

negligible. Because each

as I mentioned in Introduction. Post processing is to remove

send ALIVE signal to

in Queue for most cases. I

ep and timedwait in order to make high

ever, it turns out less than 1% even in worst case. Periodic

may affect communication overhead because it

me interval until MPI applications terminate.

classify 8 classes of failure detectors by specifying the completeness and

accuracy properties and show how to reduce 8 failure detectors to 4 and how to solve consensus for each

fects many contemporary papers because it clearly

synchronous system.

7

 In [3], Srikanth and et al. address celerating environments due to a system upgrade or periods of

high stress where absolute time speeds could increase or decrease. Bichronal timer with the composition

of action clocks and real-time clocks is able to utilize in celerating environments. My implementation is

only for real-time clocks at local node.

 In [5], Stephane and et al. implemented Fault Detector in P2P-MPI environment with heartbeat

counter. This paper addresses failure information sharing and consensus phase. They mention fault

detection overhead because they send heartbeat periodically. It is practical approach in commodity system.

7. Conclusion

 In this work, I implement sporadic Fault Detector based ping-ack messages. There are still some

implementation issues. However, I can say the practical Fault Detector is able to be implemented with the

following properties, transparency, scalability, and portability. The experimental results show that Fault

Detector has negligible overhead for both communication and performance.

 I should add the global view list for node failures and how to consensus the difference among

different global view lists. I will implement this feature in my future work [6].

8. References

[1] Jitsumoto, H., Endo, T., Matsuoka, S., "ABARIS: An Adaptable Fault Detection/Recovery

Component Framework for MPIs," IEEE International Parallel and Distributed Processing Symposium

(IPDPS 2007) pp.1-8, March 2007.

[2] Tushar Deepak Chandra , Sam Toueg, Unreliable failure detectors for reliable distributed systems,

Journal of the ACM (JACM), v.43 n.2, p.225-267, March 1996

[3] Srikanth Sastry, Scott M. Pike , Jennifer L. Welch “Crash fault detection in celerating environments”

IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009) pp.1-12, 2009.

[4] http://moss.csc.ncsu.edu/~mueller/cluster/opt/

[5] Evaluation of Replication and Fault Detection in P2P-MPI, St´ephane Genaud, Choopan Rattanapoka,

IPDPS09

[6] http://www4.ncsu.edu/~dkim2/csc548/csc548.htm

