
Cuda Acceleration for BoomerAMG implementation

Keerthana Boloor

Poonam Shidlyali

Karthikeyan Sivaraj

Progress till date:

All:

We have all completed a read through of the code and understand what needs to be done for porting

AMG to Cuda.

We have decided that we will first port basic low level (common to all 3 problems) calls to Cuda.

We have arrived at this decision because of the extensive use of dynamic memory allocation in all the

calls. So we have decided to move the portions of code in AMG where we know the amount of memory

to be allocated. Below lists a set of functions each team member has ported partially (iterations only) to

CUDA. We have compiled this without openmp and ported all the openmp calls to CUDA along with

time consuming iterations in the below given functions.

1. int hypre_BoomerAMGRelax(hypre_ParCSRMatrix *A,
 hypre_ParVector *f,

 int *cf_marker,

 int relax_type,

 int relax_points,

 double relax_weight,

 double omega,

 hypre_ParVector *u,

 hypre_ParVector *Vtemp)

Ported by Poonam

The importance of the function in the solver is as shown by the caller graph:

We port the pieces of code which are most time consuming in this function (the iterations) as shown

below[Please look at line 1638 of file par_relax.c]. We have provided this code as an example.

Memory allocated for:
tmp_data

A_diag_data

f_data

A_diag_i

A_offd_i

A_offd_j

u_data

Vext_data

Code in CUDA
__global__ void relax_on_CUDA(double* tmp_data, double* u_data, double *Vext_data,

double *A_diag_data, int* A_diag_i, int* A_offd_i, int* A_offd_j, double*

f_data,int n, int num_threads)

{

 int i,ii,j,jj,ns,ne,res,rest,size;

 unsigned int j = blockIdx.x * blockDim.x + threadIdx.x;

 size = n/num_threads;

 rest = n - size*num_threads;

 if (j < rest)

 {

 ns = j*size+j;

 ne = (j+1)*size+j+1;

 }

 else

 {

 ns = j*size+rest;

 ne = (j+1)*size+rest;

 }

 for (i = ns; i < ne; i++) /* interior points first */

 {

 /*---

 * If diagonal is nonzero, relax point i; otherwise, skip it.

 ---/

 if (A_diag_data[A_diag_i[i]] != zero)

 {

 res = f_data[i];

 for (jj = A_diag_i[i]+1; jj < A_diag_i[i+1]; jj++)

 {

 ii = A_diag_j[jj];

 if (ii >= ns && ii < ne)

 {

 res -= A_diag_data[jj] * u_data[ii];

 }

 else

 res -= A_diag_data[jj] * tmp_data[ii];

 }

 for (jj = A_offd_i[i]; jj < A_offd_i[i+1]; jj++)

 {

 ii = A_offd_j[jj];

 res -= A_offd_data[jj] * Vext_data[ii];

 }

 u_data[i] = res / A_diag_data[A_diag_i[i]];

 }

 }

 for (i = ne-1; i > ns-1; i--) /* interior points first */

 {

 /*---

 * If diagonal is nonzero, relax point i; otherwise, skip it.

 ---/

 if (A_diag_data[A_diag_i[i]] != zero)

 {

 res = f_data[i];

 for (jj = A_diag_i[i]+1; jj < A_diag_i[i+1]; jj++)

 {

 ii = A_diag_j[jj];

 if (ii >= ns && ii < ne)

 {

 res -= A_diag_data[jj] * u_data[ii];

 }

 else

 res -= A_diag_data[jj] * tmp_data[ii];

 }

 for (jj = A_offd_i[i]; jj < A_offd_i[i+1]; jj++)

 {

 ii = A_offd_j[jj];

 res -= A_offd_data[jj] * Vext_data[ii];

 }

 u_data[i] = res / A_diag_data[A_diag_i[i]];

 }

 }

 }

Issues:

Compilation errors

Other code change location for Cuda calls that we have changed are:

2. int hypre_BoomerAMGCoarsen(hypre_ParCSRMatrix *S,

 hypre_ParCSRMatrix *A,

 int CF_init,

 int debug_flag,

 int **CF_marker_ptr)

Ported by Keerthana

This function consumes maximum time.

Caller Graph:

3. HYPRE_ParCSRMatrix GenerateLaplacian(MPI_Comm comm,

 HYPRE_BigInt nx,

 HYPRE_BigInt ny,

 HYPRE_BigInt nz,

 int P,

 int Q,

 int R,

 int p,

 int q,

 int r,

 double *value,

 HYPRE_ParVector *rhs_ptr,

 HYPRE_ParVector *x_ptr)

Ported by Keerthana

4. int hypre_BoomerAMGCycle(void *amg_vdata, hypre_ParVector **F_array, hypre_ParVector

 **U_array)

Ported by Karthik.

In all these functions like shown in the example we have ported the iterations to Cuda by making sure

that we have allocated enough memory in the shared memory space of each thread in the co-processor.

Issues: We are currently having compilation problems with all functions.

Scheduled work

1. Complete and evaluate the cuda migration –All – November 14
th

(We are having compilation errors

in some functions, we will need to solve them to proceed)

2. Port higher function calls to Cuda via Cuda MPI in all 3 problems – All – November 21
st

3. Evaluate the entire Laplacian calculation for various input sizes in CUDA – Keerthana – November

24
th

4. Evaluate the entire Laplacian-27 pt calculation for various input sizes in CUDA – Poonam –

November 24
th

5. Evaluate the entire jumps calculation for various input sizes in CUDA – Karthik – November 24
th

