
CUDA Parallelization of a 2-D Compressible, Non-HydrostatiAtmospheri ModelMatthew R. NormanDeember 5, 20091 Motivation1.1 Saling Current ArhiteturesThe �eld of omputational �uid dynamis (CFD) is a very omputationally demanding �eld. All thingsonsidered, the time disretization has the greatest e�et on parallel salability, and there are generallytwo options: impliit and expliit. In the atmosphere, beause the maximum Mah number is generallyabout 1/2, we have the luxury of hoosing either an impliit or expliit method. Without getting intothe mathematis, the maximum stable time step of an expliit method is limited by the following ondition:
∆t < C∆x/umax where umax is the maximum wave speed supported by the equations set and C is a onstantthat is usually lose to one. Impliit methods do not su�er the same restrition. So the rule of thumb isthat impliit methods require more omputation per time step but take longer time steps. Clearly this is atrade-o�.When a geophysial sientist refers to salability, he or she is usually referring to throughput saling. Inother words, if a model at 100 km grid spaing takes 5 simulated years per day (SYPD), that is 5 model yearssimulated per walllok day, then running at 25km resolution should also take 5 SYPD after distributingthe model over more proessing elements (PEs). What makes this partiularly di�ult in CFD is that thealgorithmi omplexity is never purely spatial, and one annot spread PEs aross the time domain. Sothroughput does not sale (in the Gustafson's saling sense) asymptotially with spatial re�nement (at leastwith urrent algorithms), and it likely never will.Impliit methods rely on solving large (usually pretty sparse) linear systems iteratively. Usually, a Krylov-type method is used suh as the General Minimized Residual (GMRes) method beause it handles anygeneral matrix without assumptions on eigenvalue spread or symmetry. For sparse matries, the algorithmiomplexity is generally the same order as expliit methods. However, as the number of grid points grows,the ondition number of the matrix also usually grows. Therefore, more iterations are required to onvergeto some desired relative residual. Also, as resolution is inreased, the multi-sale nature of the �ow is alsogreatly inreased whih makes e�etive pre-onditioning more di�ult (requiring even more iterations toonverge). GMRes an only perform but so many iterations before the algorithmi omplexity grows toorder n2 (where n is the total number of model grid ells). To avoid this, the method is �restarted� whihis a ostly proedure. Therefore, the amount of work per time step is asymptotially super-linear as thenumber of grid ells inreases. This makes the method hard to sale.Also, impliit methods require global ommuniation patterns whih are expensive in parallel ompared toexpliit methods. Assuming the time step an be held onstant as the spatial grid is re�ned and assumingthe work per time step is linearly proportional to the number of grid ells, a fator of m re�nement in spaerequires a fator of m3 more omputation (in 3 spatial dimensions). Therefore, if a grid spaing of 300km runs e�etively on 256 proessors, 150 km grid spaing will require 2048 proessors assuming perfetspeed-up. However, due to the heavy global ommuniation requirements of impliit methods, this salingwill be highly sub-linear, even for Gustafson saling. Also, for physial time sale reasons, the time step1

annot be held onstant asymptotially. As shown before, the work per time step is not proportional to thenumber of grid ells but grows superlinearly.One may think, then, that for that atmosphere, expliit methods would sale muh better. However, theyare limited by the onstraint that the maximum stable time step is proportional to the grid spaing. Beauseof the loal ommuniation requirements in parallel, an intelligent algorithm should sale in spae very well(assuming the data layout lines up with the network topology well). However, beause of the time steponstraints, a fator of m re�nement tin spae now requires a fator of m4 more omputation (in 3 spatialdimensions). Therefore, though expliit methods sale well spatially, they an never sale asymptotially intime (and therefore throughput). One an alleviate the time step onstraint some, and the method I am usingin this study is intended for eventual extension to larger time steps. This inurs some extra ommuniation,but the larger time step would outweigh that in the overall throughput. However, this is not an asymptotisolution but a temporary boost in throughput.The onlusion asymptotially is, therefore, dismal beause neither method sales in throughput as spatialre�nements are made. Multisale methods suh as adaptive mesh re�nement (AMR) o�er some hope, butthey also have aspets that are very di�ult to sale. For instane, in expliit AMR, a fator of 2 re�nementwill use a fator of 2 smaller time step and is iterated while larger ells are held onstant. The proessorsalloated to larger ells do nothing while the smaller ells are iterated whih leads to load balaning di�ulties.Remapping the proessors eah time step requires global ommuniation, and the only option for a singlemodel time step is to go impliit whih was disussed above. I think that ultimately, if atmospheri modelsare to sale well into and past exasale omputing, a breakthrough must take plae in impliit methods suhthat omputational work sales linearly with the total number of grid ells, and somehow ommuniationosts must be redued signi�antly. Otherwise, we'll simply need some new triks to see feasible throughputin re�ned limate runs.However, onsidering the �required� limate throughput of 5 SYPD (I don't know how rigid this truly is),the onstant of algorithmi omplexity an be manipulated e�etively for expliit methods over very largenumbers of proessors for the time being. For instane, there is a very low ommuniation method alledspetral element (an approximation to �nite element) whih is giving promising results at impressivelyhigh resolutions near 14km using O
(

105
) proessors. Strong saling an be obtained via more e�ientalgorithms with lower ommuniation and omputational requirements. It an also be done with hardwareimprovements. Also, I/O, storage apaity, and data analysis onstraints will likely dominate before theexpliit omputational throughput barrier is reahed. A partiularly enlightening presentation1 by Dr. RihLoft at the National Center for Atmospheri Researh shows some insights regarding the human brain asde�ning a level of e�ieny for a parallel (petasale) omputer. My main dotoral researh motivation here atNCSU is to develop an expliit algorithm with a ompetitive time step and minimal parallel ommuniationrequirements.1.2 GPGPUs as Alternative ArhiteturesViewing the limitations of urrent arhitetures, I had onsiderable interest in testing out other arhiteturessuh as General Purpose Graphial Proessing Units (GPGPUs). Given that they are designed for �op-intensive algorithms with low ommuniation / synhronization requirements, there is great ompetitivepotential. This paper desribes the GPGPU parallelization of a serial 2-D, non-hydrostati, ompressibleatmospheri model using Nvidia's CUDA language. For a single GPU, after initialization, there is no needfor any DMA transfers between devie and host beause all omputation an be done on the devie viakernels. Therefore, the synhronization between time steps is automati and very heap. However, for MPIdomain deomposition aross multiple GPUs, the boundaries must be exhanged eah time step whih anbe quite onstraining for high lateny and/or low bandwidth networks.The goal of the projet was to ahieve an overall 64x speed-up over a well-tuned CPU appliation usingmultiple GPUs onneted via MPI. The reason for a 64x speed-up was that a fator of 4 inrease in resolutionrequires a fator of 43 = 64 speed-up (halving in two spatial dimensions and in time) in order to omplete1http://www.gd.uar.edu/ms/pel/asp2008/6-Loft-Petasale.pdf2

the simulation in the same amount of time. I ompute speed-up indiretly beause I don't have time to waitdays for a CPU job to �nish. Therefore, I ompare the walllok time of a given CPU experiment with thewalllok time of a larger GPU experiment by extrapolating the CPU walllok time by the known inreasein ompute requirements. If a CPU job takes TCPU seonds to omplete and a GPU job re�ned spatiallyby a fator of r takes TGPU seonds to omplete, the speed-up is omputed as S = r3TCPU/TGPU . This isprobably optimisti for the CPU beause ahing issues would seemingly beome worse with larger problemsize. Also, periodi output is also inluded in the wall lok times whih also give preferene to the CPUbeause of smaller �le sizes. Therefore, estimates of speed-up are onservative.2 Model DesriptionThe model in this study is a 2-D non-hydrostati, invisid, fully ompressible atmospheri model. Mathemat-ially, it is a numerial approximation to a set of four onservation laws (a speial type of partial di�erentialequation) onserving mass, momentum and entropy in two dimensions with a gravity soure term. Theapproximation is performed with the �nite volume method in whih ell means are updated in inrementsof time alled time steps based on interfae �uxes between ells. Computing the �uxes aounts for nearlyall of the omputational e�ort in the model.Fluxes are omputed with a new method I have developed during my dotorate researh alled the harateristis-based �ux-form semi-Lagrangian method. The method has some advantages over onventional �nite volumemethods for meteorology in that only one exhange of boundary information is needed per time step (ratherthan multiple swaps per time step). The mathematial details are relatively unimportant omputationallyexept to say that there is no if/then logi in the implementation. They WENO (Weighted Essentially Non-Osillatory) interpolation is fairly ompute intensive, and muh of this is hidden by the GPU aeleration.The experiment I had originally hosen for this study did not visually show the advantages of added resolutionterribly well. Therefore, I have reated a di�erent experiment that is more visually revealing. In a thermallyneutral and initially hydrostati atmosphere, a old bubble is plaed and the top of the domain and a warmbubble is plaed at the bottom. As the simulation progresses, they are buoyantly propelled towards oneanother, and after ollision, turbulene ensues. It is the inreasing resolution of smaller and smaller salerotors that shows up in the temperature plots. Regardless, the atual omputations have no bearing on therequired �ops.2.1 Porting to CThe model was originally implemented in Fortran 90, and some modi�ations had to be made for an e�etiveC implementation. First, the multiple dimensional arrays were lined into single dimensional arrays for easiermanipulation on the GPUs, and C maro funtions were used for easier indexing. Also, the order of loopnesting was reversed for row major storage. I took out many of the model parameters and turned them intomaro de�ned onstants for the sake of e�ieny. For sake of a fair omparison between CPU and GPUimplementations, I inluded OpenMP parallel for pragmas before the outer loop of eah omputationallyintensive setion, and the speed-up was very lose to linear. I plaed a maro swith between single anddouble preision.2.2 Porting to CUDAWith the ode ported to C, the CUDA implementation was relatively quik. First, before the main om-putational loop, spae is alloated on the GPU devie for state variables, �uxes, and basi states. Memoryrequirement for m × n ells is 8mn + 4m + 6n + 4. After data initialization, it is transferred via DMA tothe devie. Six subroutines were then onverted into CUDA kernels, and devie memory pointers to statevariables, �uxes, and basi states are passed to them. They are: flux_x, update_x, flux_z, update_z,soure, and boundaries. Most of the omputation ours in the �ux routines, but the others must be3

turned into kernels even if they didn't give speed-ups beause the data must remain resident in the devie.Repetitive DMA transfers would be detrimental to overall e�ieny.To atually transform the subroutines into kernels, the for loops were transformed as follows:f o r (i = GS; i < NXC+GS+1; i++) {f o r (j = GS; j < NZC+GS; j++) {was onverted toi i = blokIdx . x∗blokDim . x+threadIdx . x ;j j = blokIdx . y∗blokDim . y+threadIdx . y ;f o r (i = GS+i i ; i < NXC+GS+1; i+=gridDim . x∗blokDim . x) {f o r (j = GS+j j ; j < NZC+GS; j+=gridDim . y∗blokDim . y) {I also plaed unroll pragmas before any of the loops with onstant loop size whih inreased the speed-up. Onthe GTX 280 devies, there are 16K registers available per blok. I tested limiting the registers per threadto 128 to support 128 threads per blok, and I tested a maximum of 64 registers per thread to support 256threads per blok. It turns out that even though limiting to 64 registers redues the single-thread speed andinreases loal memory aesses (whih are slow and unahed), having 256 threads is faster. This ouldonly be beause of a more e�etive hiding of slow memory aesses with inreased omputation.2.3 CUDA + MPIOne the GPU kernels were suessfully implemented, the next step was to introdue MPI ommuniationon the host side to tether multiple GPUs for further speed-up. The modi�ations were only in three plaes.First, the initial setup was altered to divide and satter the data. Next, the output routine was altered toDMA the information to the host and then gather the data before output. Finally, the boundaries routinewas turned bak into a regular C funtion, and internal boundaries are passed with asynhronous sends andreeives after DMA to the host. After the boundaries �nish, the data is passed via DMA bak to the devie.Currently, the domain deomposition is implemented to split up in the x diretion only. Though this isertainly not the most e�ient implementation, it does make the programming very easy for the time being.I plaed some wall timers to give a simple pro�ling of the ommuniation, omputation, and output osts.3 Experimental SetupTo ompute the speed-up and other parameters for the GPU and GPU+MPI odes over the CPU ode, theyare atually run with di�erent numbers of grid ells. The CPU ode is run at the standard resolution of160x80 ells. The GPU is oded to run with over 100,000 threads per kernel all, but the standard resolutiononly has about 13,000 ells. Therefore, I had to run with 640x320 ells to get enough ells to �ll the GPUdevie. When running with MPI, I ran up to 8 GPUs at a time. In order to suessfully �ll the devies, I ranthe ode with 2560x1280 ells whih is about 3.3 million ells. The CPU used was an Intel(R) Core(TM)2CPU 4400, and an Nvidia GTX 280 was the GPU used.To atually ompute the speed-up with di�erent work loads, I use the fat that the work load is proportionalto the number of ells and the time step. With m × n ells at a time step, ∆t, the omputational ost is
C0 = κmn (T/∆t) where T is the total simulation time. To re�ne the grid spaing by a fator of r, thenew omputational ost is Cr = r3κmn (T/∆t) = r3C0 beause not only must both dimensions be re�ned,but the time step must be re�ned by the same fator. Therefore, the 640x320 ell runs would take 64 timeslonger than the 160x80 ell runs, and the 2560x1280 ell runs would take 4096 times longer. Therefore,omparing a run re�ned by a fator of r against the standard resolution on a CPU, the speed-up is omputedas S = r3wCPU/wGPU where w is the wall time. 4

Desription Preision # Cells Walltime (s) Speed-up Comm/Comp E�ienyCPU double 160x80 200 � � �1 GPU double 640x320 737 17.2 � �1 GPU single 640x320 642 19.8 � �2 GPUs double 2560x1280 29,750 27.5 0.098 0.802 GPUs single 2560x1280 19,180 42.6 0.066 1.084 GPUs double 2560x1280 19,005 42.9 0.38 0.624 GPUs single 2560x1280 11,750 69.4 0.27 0.888 GPUs double 2560x1280 12,659 64.1 0.81 0.478 GPUs single 2560x1280 7,341 110.7 0.52 0.70Table 1: Simulation results4 Results4.1 Parallel Metris and Disussion4.1.1 Single GPUWall times, speed-ups, ommuniation/omputation ratios (for MPI runs), and e�ienies (for MPI runs)are given in the Table 1. To begin interpreting these results, it is most obvious that loal and global memoryaesses are not being handled e�iently. The single preision time should be half of the double preision ifnot even less. Clearly, the omputation is not suessfully hiding memory latenies in single preision. Thefat that the double preision barely takes a performane hit is showing that the inreased amount of work ismasking memory lateny. This ould indiate that for double preision omputations, memory optimizationsmay be less important.Note that the CPU osts $113 in a 1,000 bulk unit prie, and the GPU runs at about $255. For equal doublepreision performane, you would need 17 CPUs (with the extremely generous assumption of perfet parallele�ieny). Performane/ost ratio improves by at least a fator of 7.5 and is more likely at least a fator of10 (assumption of 75% e�ieny) with real world parallel overheads. That's a powerful inentive to onsiderGPUs in the real world. Another bene�t of GPUs is that less networking is involved beause fewer need tobe used to get a desired speed-up. 17 · 8 = 136 CPUs is a lot more to network than just 8 GPUs, and oneould probably use a faster and more expensive networking (suh as hyperube) with the GPUs than forCPUs beause there are fewer of them to link. This would lead to likely muh better GPU e�ieny whennetworked well.4.1.2 GPU+MPINow onsidering the MPI runs, it appears that the main limitation is network bandwidth. Consider thatthe omputations in double preision take 15% longer than in single preision, and yet the single preisionommuniation / omputation ratio (CCR) is 30% less than double preision. The only possible explanationfor this is that the single preision simulations are transferring only half of the data. Therefore, an inreasein network bandwidth would go a very long way in reduing the ommuniation times. The e�ienies reallydo not look very good, espeially in double preision with less than half for 8 GPUs. I did get the 64xspeed-up �nally with 8 GPUs in double preision. Notie that for single preision and 2 GPUs, the e�ienyshows supersaling. The only possibility I an think of is that the larger problem size and more work perthread hid more of the memory lateny. It also didn't hurt that the two nodes ommuniation were adjaent(assuming hostname numbers indiate physial proximity).The fat that the CCR is less than unity for eah of the MPI runs means there is good potential to hide thelateny with overlap. One ould simply run the internal domain (negleting the boundaries whih dependon ommuniated data) of a node while ommuniating data and then run the outer domain border after5

ommuniation. This would probably ompletely hide the ommuniation, and the only penalty would be onthe GPU itself beause there are fewer ells to spread aross the devie on the border kernel launhes. Thiswould be more di�ult to do as more GPUs are used and the number of ells spread aross eah beomessmaller (in a strong saling sense).4.2 How many GPUs should I use for 2560x1280?To simplify things by removing the ommuniation overhead, with the CCR given, ommuniation takesa proportion of CCR/ (CCR + 1) of the total wall time. Therefore, the speed-up without ommuniationoverhead will be S
′

= S/MC where MC = 1 − CCR/ (CCR + 1) ould be thought of as a ommuniationpenalty multiplier. Going from one to eight GPUs without ommuniation has a speed-up of 6.76. Theparallel portion (with ommuniation extrated) of the algorithm an be pulled out of Amdahl's law with
p = [n/ (n − 1)] · [(s − 1) /s]. For eight proessors, this is p = 0.9738. Using this to obtain S

′ and dividing by
p to get the e�ieny, we an get an �ideal� piture of maximum speed-up. With 16, 32, and 64 GPUs, I anget idealized speed-ups of 72%, 55%, and 38%, respetively. So even with a very good networking system,it wouldn't be wise to use more than 16 or 32 GPUs at this resolution before I need to resume Gustafson'ssaling to keep the e�ieny onstant.4.3 Translation to Real LifeNow it's time for some bak of the envelope alulations. A 1 degree grid spaing limate model with 50vertial levels will have 360x180x50=3.24 million ells. The 2560x1280 resolution 2-D run has 3.28 millionells at a grid spaing of 7.8125 meters and a time step of 0.015625 seonds, and it omputes 64,000 timesteps in a wall time of 12,659 seonds. The ratio limate model time step to 2-D model time step is thesame as the ratio of grid spaings (whih is roughly 14,008). So the limate model time step would be 222seonds, and 64,000 time steps would give a simulation of 164.4 model days. The simulated years per day(SYPD) throughput would, then, be 3.07 SYPD. Keep in mind also that a 3-D model will have 50% morework to do in a time step beause of an added dimension of �uxes, making the throughput 2.05 SYPD indouble preision. In single preision, it would be 3.27 SYPD. Assuming the network bandwidth were vastlyimproved to redue the CCR to 0.05, then I would have a double preision throughput of 3.53 SYPD and asingle preision throughput of 4.7 SYPD.These are, of ourse, bak of the envelope omputations, and this is only for the dynamis and doesn't takeinto aount the physis pakages whih would be di�ult to port to GPUs beause of extensive use of if/thenlogi in some of them. But it seems that e�ieny would have to be sari�ed in order to get the neessarythroughput of 5 SYPD. It is also true that my MPI parallelization is highly ine�ient beause it deomposesthe domain only in one dimension. The CCR is always lower when domain deomposition is performed inmultiple dimensions rather than one. Also, there are other optimizations suh as extending the algorithmup to a Courant number of 2 (whih I hope to do soon), and this would inrease the throughput So theredoes seem to be some good hope in GPUs. The thing to be weary of is that one I begin Gustafson's saling,the throughput will automatially ut in half beause of time stepping onstraints. So realistially, I wouldlike to have a solid throughput of around 20 SYPD at 1 degree before problem saling so that simulating ataround 28km would still give the required throughput.All of this being said, to have a 1 degree limate model running on on 16 or 32 GPUs is very eonomiallytempting beause the hardware itself is going to be less than $10K. Also, there are many ards oming outthat are even better than the GTX 280 ards, and these may push the envelope on speed-up. I have alsoread on message boards (no formal on�rmation yet) that ATI graphis ards are generally 4x better thanNvidia for double preision �op rates. If this is true, then openCL may be the better option.Of ourse, I have somewhat treated single preision as if it were not an option. It shows some strongasymmetries for solutions that should be symmetri, and the plaement of some features is very poor. Thisgives me somehesitane to use single preision in a real model run. It would have to be demonstrated inpratie whether or not these asymmetries will adversely a�et the overall limate simulation sine there are6

many other errors in the model that may dominate. If single preision is possible, then memory e�ienywill need to be addressed beause a boost in single-GPU �ops will inrease the throughput quite a bit.5 Future WorkIn the future, I would like to try out openCL on ATI graphis ards to see if the double preision supportreally is superior. Also, I need to hange the domain deomposition into a 2-D one to further redue the CCR.I am urrently using fairly simple asynhronous sends and reeives for MPI ommuniation of the boundaries,and it would be interesting to see if there is a better option for that. Also, sine the omputation time islarger than ommuniation time, it would be worthwhile to mask the ommuniation times with some overlapfrom eah node's internal domain whih doesn't depend on the boundaries. The algorithm I used for �uxesis intended to extend the time step to any arbitrary (within reason of ourse) Courant number to inreasethroughput. I need to �nish testing this, and if it is possible, it would be a good implementation to inludein the CUDA version of the ode. Parallel I/O is a must at some point beause eventually, the host memorywill over�ow if I/O is done serially. Also, the output is one of the serializing aspets that keeps the parallelfration low in Amdahl's law. The parallel NetCDF library is one option for this. Finally, I would like to seewhat kind of memory optimizations an be performed in the kernels to inrease the �ops. These, together,should at to drastially inrease the throughput.

7

