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ember 5, 20091 Motivation1.1 S
aling Current Ar
hite
turesThe �eld of 
omputational �uid dynami
s (CFD) is a very 
omputationally demanding �eld. All things
onsidered, the time dis
retization has the greatest e�e
t on parallel s
alability, and there are generallytwo options: impli
it and expli
it. In the atmosphere, be
ause the maximum Ma
h number is generallyabout 1/2, we have the luxury of 
hoosing either an impli
it or expli
it method. Without getting intothe mathemati
s, the maximum stable time step of an expli
it method is limited by the following 
ondition:
∆t < C∆x/umax where umax is the maximum wave speed supported by the equations set and C is a 
onstantthat is usually 
lose to one. Impli
it methods do not su�er the same restri
tion. So the rule of thumb isthat impli
it methods require more 
omputation per time step but take longer time steps. Clearly this is atrade-o�.When a geophysi
al s
ientist refers to s
alability, he or she is usually referring to throughput s
aling. Inother words, if a model at 100 km grid spa
ing takes 5 simulated years per day (SYPD), that is 5 model yearssimulated per wall
lo
k day, then running at 25km resolution should also take 5 SYPD after distributingthe model over more pro
essing elements (PEs). What makes this parti
ularly di�
ult in CFD is that thealgorithmi
 
omplexity is never purely spatial, and one 
annot spread PEs a
ross the time domain. Sothroughput does not s
ale (in the Gustafson's s
aling sense) asymptoti
ally with spatial re�nement (at leastwith 
urrent algorithms), and it likely never will.Impli
it methods rely on solving large (usually pretty sparse) linear systems iteratively. Usually, a Krylov-type method is used su
h as the General Minimized Residual (GMRes) method be
ause it handles anygeneral matrix without assumptions on eigenvalue spread or symmetry. For sparse matri
es, the algorithmi

omplexity is generally the same order as expli
it methods. However, as the number of grid points grows,the 
ondition number of the matrix also usually grows. Therefore, more iterations are required to 
onvergeto some desired relative residual. Also, as resolution is in
reased, the multi-s
ale nature of the �ow is alsogreatly in
reased whi
h makes e�e
tive pre-
onditioning more di�
ult (requiring even more iterations to
onverge). GMRes 
an only perform but so many iterations before the algorithmi
 
omplexity grows toorder n2 (where n is the total number of model grid 
ells). To avoid this, the method is �restarted� whi
his a 
ostly pro
edure. Therefore, the amount of work per time step is asymptoti
ally super-linear as thenumber of grid 
ells in
reases. This makes the method hard to s
ale.Also, impli
it methods require global 
ommuni
ation patterns whi
h are expensive in parallel 
ompared toexpli
it methods. Assuming the time step 
an be held 
onstant as the spatial grid is re�ned and assumingthe work per time step is linearly proportional to the number of grid 
ells, a fa
tor of m re�nement in spa
erequires a fa
tor of m3 more 
omputation (in 3 spatial dimensions). Therefore, if a grid spa
ing of 300km runs e�e
tively on 256 pro
essors, 150 km grid spa
ing will require 2048 pro
essors assuming perfe
tspeed-up. However, due to the heavy global 
ommuni
ation requirements of impli
it methods, this s
alingwill be highly sub-linear, even for Gustafson s
aling. Also, for physi
al time s
ale reasons, the time step1




annot be held 
onstant asymptoti
ally. As shown before, the work per time step is not proportional to thenumber of grid 
ells but grows superlinearly.One may think, then, that for that atmosphere, expli
it methods would s
ale mu
h better. However, theyare limited by the 
onstraint that the maximum stable time step is proportional to the grid spa
ing. Be
auseof the lo
al 
ommuni
ation requirements in parallel, an intelligent algorithm should s
ale in spa
e very well(assuming the data layout lines up with the network topology well). However, be
ause of the time step
onstraints, a fa
tor of m re�nement tin spa
e now requires a fa
tor of m4 more 
omputation (in 3 spatialdimensions). Therefore, though expli
it methods s
ale well spatially, they 
an never s
ale asymptoti
ally intime (and therefore throughput). One 
an alleviate the time step 
onstraint some, and the method I am usingin this study is intended for eventual extension to larger time steps. This in
urs some extra 
ommuni
ation,but the larger time step would outweigh that in the overall throughput. However, this is not an asymptoti
solution but a temporary boost in throughput.The 
on
lusion asymptoti
ally is, therefore, dismal be
ause neither method s
ales in throughput as spatialre�nements are made. Multis
ale methods su
h as adaptive mesh re�nement (AMR) o�er some hope, butthey also have aspe
ts that are very di�
ult to s
ale. For instan
e, in expli
it AMR, a fa
tor of 2 re�nementwill use a fa
tor of 2 smaller time step and is iterated while larger 
ells are held 
onstant. The pro
essorsallo
ated to larger 
ells do nothing while the smaller 
ells are iterated whi
h leads to load balan
ing di�
ulties.Remapping the pro
essors ea
h time step requires global 
ommuni
ation, and the only option for a singlemodel time step is to go impli
it whi
h was dis
ussed above. I think that ultimately, if atmospheri
 modelsare to s
ale well into and past exas
ale 
omputing, a breakthrough must take pla
e in impli
it methods su
hthat 
omputational work s
ales linearly with the total number of grid 
ells, and somehow 
ommuni
ation
osts must be redu
ed signi�
antly. Otherwise, we'll simply need some new tri
ks to see feasible throughputin re�ned 
limate runs.However, 
onsidering the �required� 
limate throughput of 5 SYPD (I don't know how rigid this truly is),the 
onstant of algorithmi
 
omplexity 
an be manipulated e�e
tively for expli
it methods over very largenumbers of pro
essors for the time being. For instan
e, there is a very low 
ommuni
ation method 
alledspe
tral element (an approximation to �nite element) whi
h is giving promising results at impressivelyhigh resolutions near 14km using O
(

105
) pro
essors. Strong s
aling 
an be obtained via more e�
ientalgorithms with lower 
ommuni
ation and 
omputational requirements. It 
an also be done with hardwareimprovements. Also, I/O, storage 
apa
ity, and data analysis 
onstraints will likely dominate before theexpli
it 
omputational throughput barrier is rea
hed. A parti
ularly enlightening presentation1 by Dr. Ri
hLoft at the National Center for Atmospheri
 Resear
h shows some insights regarding the human brain asde�ning a level of e�
ien
y for a parallel (petas
ale) 
omputer. My main do
toral resear
h motivation here atNCSU is to develop an expli
it algorithm with a 
ompetitive time step and minimal parallel 
ommuni
ationrequirements.1.2 GPGPUs as Alternative Ar
hite
turesViewing the limitations of 
urrent ar
hite
tures, I had 
onsiderable interest in testing out other ar
hite
turessu
h as General Purpose Graphi
al Pro
essing Units (GPGPUs). Given that they are designed for �op-intensive algorithms with low 
ommuni
ation / syn
hronization requirements, there is great 
ompetitivepotential. This paper des
ribes the GPGPU parallelization of a serial 2-D, non-hydrostati
, 
ompressibleatmospheri
 model using Nvidia's CUDA language. For a single GPU, after initialization, there is no needfor any DMA transfers between devi
e and host be
ause all 
omputation 
an be done on the devi
e viakernels. Therefore, the syn
hronization between time steps is automati
 and very 
heap. However, for MPIdomain de
omposition a
ross multiple GPUs, the boundaries must be ex
hanged ea
h time step whi
h 
anbe quite 
onstraining for high laten
y and/or low bandwidth networks.The goal of the proje
t was to a
hieve an overall 64x speed-up over a well-tuned CPU appli
ation usingmultiple GPUs 
onne
ted via MPI. The reason for a 64x speed-up was that a fa
tor of 4 in
rease in resolutionrequires a fa
tor of 43 = 64 speed-up (halving in two spatial dimensions and in time) in order to 
omplete1http://www.
gd.u
ar.edu/
ms/pel/asp2008/6-Loft-Petas
ale.pdf2



the simulation in the same amount of time. I 
ompute speed-up indire
tly be
ause I don't have time to waitdays for a CPU job to �nish. Therefore, I 
ompare the wall
lo
k time of a given CPU experiment with thewall
lo
k time of a larger GPU experiment by extrapolating the CPU wall
lo
k time by the known in
reasein 
ompute requirements. If a CPU job takes TCPU se
onds to 
omplete and a GPU job re�ned spatiallyby a fa
tor of r takes TGPU se
onds to 
omplete, the speed-up is 
omputed as S = r3TCPU/TGPU . This isprobably optimisti
 for the CPU be
ause 
a
hing issues would seemingly be
ome worse with larger problemsize. Also, periodi
 output is also in
luded in the wall 
lo
k times whi
h also give preferen
e to the CPUbe
ause of smaller �le sizes. Therefore, estimates of speed-up are 
onservative.2 Model Des
riptionThe model in this study is a 2-D non-hydrostati
, invis
id, fully 
ompressible atmospheri
 model. Mathemat-i
ally, it is a numeri
al approximation to a set of four 
onservation laws (a spe
ial type of partial di�erentialequation) 
onserving mass, momentum and entropy in two dimensions with a gravity sour
e term. Theapproximation is performed with the �nite volume method in whi
h 
ell means are updated in in
rementsof time 
alled time steps based on interfa
e �uxes between 
ells. Computing the �uxes a

ounts for nearlyall of the 
omputational e�ort in the model.Fluxes are 
omputed with a new method I have developed during my do
torate resear
h 
alled the 
hara
teristi
s-based �ux-form semi-Lagrangian method. The method has some advantages over 
onventional �nite volumemethods for meteorology in that only one ex
hange of boundary information is needed per time step (ratherthan multiple swaps per time step). The mathemati
al details are relatively unimportant 
omputationallyex
ept to say that there is no if/then logi
 in the implementation. They WENO (Weighted Essentially Non-Os
illatory) interpolation is fairly 
ompute intensive, and mu
h of this is hidden by the GPU a

eleration.The experiment I had originally 
hosen for this study did not visually show the advantages of added resolutionterribly well. Therefore, I have 
reated a di�erent experiment that is more visually revealing. In a thermallyneutral and initially hydrostati
 atmosphere, a 
old bubble is pla
ed and the top of the domain and a warmbubble is pla
ed at the bottom. As the simulation progresses, they are buoyantly propelled towards oneanother, and after 
ollision, turbulen
e ensues. It is the in
reasing resolution of smaller and smaller s
alerotors that shows up in the temperature plots. Regardless, the a
tual 
omputations have no bearing on therequired �ops.2.1 Porting to CThe model was originally implemented in Fortran 90, and some modi�
ations had to be made for an e�e
tiveC implementation. First, the multiple dimensional arrays were lined into single dimensional arrays for easiermanipulation on the GPUs, and C ma
ro fun
tions were used for easier indexing. Also, the order of loopnesting was reversed for row major storage. I took out many of the model parameters and turned them intoma
ro de�ned 
onstants for the sake of e�
ien
y. For sake of a fair 
omparison between CPU and GPUimplementations, I in
luded OpenMP parallel for pragmas before the outer loop of ea
h 
omputationallyintensive se
tion, and the speed-up was very 
lose to linear. I pla
ed a ma
ro swit
h between single anddouble pre
ision.2.2 Porting to CUDAWith the 
ode ported to C, the CUDA implementation was relatively qui
k. First, before the main 
om-putational loop, spa
e is allo
ated on the GPU devi
e for state variables, �uxes, and basi
 states. Memoryrequirement for m × n 
ells is 8mn + 4m + 6n + 4. After data initialization, it is transferred via DMA tothe devi
e. Six subroutines were then 
onverted into CUDA kernels, and devi
e memory pointers to statevariables, �uxes, and basi
 states are passed to them. They are: flux_x, update_x, flux_z, update_z,sour
e, and boundaries. Most of the 
omputation o

urs in the �ux routines, but the others must be3



turned into kernels even if they didn't give speed-ups be
ause the data must remain resident in the devi
e.Repetitive DMA transfers would be detrimental to overall e�
ien
y.To a
tually transform the subroutines into kernels, the for loops were transformed as follows:f o r ( i = GS; i < NXC+GS+1; i++) {f o r ( j = GS; j < NZC+GS; j++) {was 
onverted toi i = blo
kIdx . x∗blo
kDim . x+threadIdx . x ;j j = blo
kIdx . y∗blo
kDim . y+threadIdx . y ;f o r ( i = GS+i i ; i < NXC+GS+1; i+=gridDim . x∗blo
kDim . x ) {f o r ( j = GS+j j ; j < NZC+GS; j+=gridDim . y∗blo
kDim . y ) {I also pla
ed unroll pragmas before any of the loops with 
onstant loop size whi
h in
reased the speed-up. Onthe GTX 280 devi
es, there are 16K registers available per blo
k. I tested limiting the registers per threadto 128 to support 128 threads per blo
k, and I tested a maximum of 64 registers per thread to support 256threads per blo
k. It turns out that even though limiting to 64 registers redu
es the single-thread speed andin
reases lo
al memory a

esses (whi
h are slow and un
a
hed), having 256 threads is faster. This 
ouldonly be be
ause of a more e�e
tive hiding of slow memory a

esses with in
reased 
omputation.2.3 CUDA + MPIOn
e the GPU kernels were su

essfully implemented, the next step was to introdu
e MPI 
ommuni
ationon the host side to tether multiple GPUs for further speed-up. The modi�
ations were only in three pla
es.First, the initial setup was altered to divide and s
atter the data. Next, the output routine was altered toDMA the information to the host and then gather the data before output. Finally, the boundaries routinewas turned ba
k into a regular C fun
tion, and internal boundaries are passed with asyn
hronous sends andre
eives after DMA to the host. After the boundaries �nish, the data is passed via DMA ba
k to the devi
e.Currently, the domain de
omposition is implemented to split up in the x dire
tion only. Though this is
ertainly not the most e�
ient implementation, it does make the programming very easy for the time being.I pla
ed some wall timers to give a simple pro�ling of the 
ommuni
ation, 
omputation, and output 
osts.3 Experimental SetupTo 
ompute the speed-up and other parameters for the GPU and GPU+MPI 
odes over the CPU 
ode, theyare a
tually run with di�erent numbers of grid 
ells. The CPU 
ode is run at the standard resolution of160x80 
ells. The GPU is 
oded to run with over 100,000 threads per kernel 
all, but the standard resolutiononly has about 13,000 
ells. Therefore, I had to run with 640x320 
ells to get enough 
ells to �ll the GPUdevi
e. When running with MPI, I ran up to 8 GPUs at a time. In order to su

essfully �ll the devi
es, I ranthe 
ode with 2560x1280 
ells whi
h is about 3.3 million 
ells. The CPU used was an Intel(R) Core(TM)2CPU 4400, and an Nvidia GTX 280 was the GPU used.To a
tually 
ompute the speed-up with di�erent work loads, I use the fa
t that the work load is proportionalto the number of 
ells and the time step. With m × n 
ells at a time step, ∆t, the 
omputational 
ost is
C0 = κmn (T/∆t) where T is the total simulation time. To re�ne the grid spa
ing by a fa
tor of r, thenew 
omputational 
ost is Cr = r3κmn (T/∆t) = r3C0 be
ause not only must both dimensions be re�ned,but the time step must be re�ned by the same fa
tor. Therefore, the 640x320 
ell runs would take 64 timeslonger than the 160x80 
ell runs, and the 2560x1280 
ell runs would take 4096 times longer. Therefore,
omparing a run re�ned by a fa
tor of r against the standard resolution on a CPU, the speed-up is 
omputedas S = r3wCPU/wGPU where w is the wall time. 4



Des
ription Pre
ision # Cells Walltime (s) Speed-up Comm/Comp E�
ien
yCPU double 160x80 200 � � �1 GPU double 640x320 737 17.2 � �1 GPU single 640x320 642 19.8 � �2 GPUs double 2560x1280 29,750 27.5 0.098 0.802 GPUs single 2560x1280 19,180 42.6 0.066 1.084 GPUs double 2560x1280 19,005 42.9 0.38 0.624 GPUs single 2560x1280 11,750 69.4 0.27 0.888 GPUs double 2560x1280 12,659 64.1 0.81 0.478 GPUs single 2560x1280 7,341 110.7 0.52 0.70Table 1: Simulation results4 Results4.1 Parallel Metri
s and Dis
ussion4.1.1 Single GPUWall times, speed-ups, 
ommuni
ation/
omputation ratios (for MPI runs), and e�
ien
ies (for MPI runs)are given in the Table 1. To begin interpreting these results, it is most obvious that lo
al and global memorya

esses are not being handled e�
iently. The single pre
ision time should be half of the double pre
ision ifnot even less. Clearly, the 
omputation is not su

essfully hiding memory laten
ies in single pre
ision. Thefa
t that the double pre
ision barely takes a performan
e hit is showing that the in
reased amount of work ismasking memory laten
y. This 
ould indi
ate that for double pre
ision 
omputations, memory optimizationsmay be less important.Note that the CPU 
osts $113 in a 1,000 bulk unit pri
e, and the GPU runs at about $255. For equal doublepre
ision performan
e, you would need 17 CPUs (with the extremely generous assumption of perfe
t parallele�
ien
y). Performan
e/
ost ratio improves by at least a fa
tor of 7.5 and is more likely at least a fa
tor of10 (assumption of 75% e�
ien
y) with real world parallel overheads. That's a powerful in
entive to 
onsiderGPUs in the real world. Another bene�t of GPUs is that less networking is involved be
ause fewer need tobe used to get a desired speed-up. 17 · 8 = 136 CPUs is a lot more to network than just 8 GPUs, and one
ould probably use a faster and more expensive networking (su
h as hyper
ube) with the GPUs than forCPUs be
ause there are fewer of them to link. This would lead to likely mu
h better GPU e�
ien
y whennetworked well.4.1.2 GPU+MPINow 
onsidering the MPI runs, it appears that the main limitation is network bandwidth. Consider thatthe 
omputations in double pre
ision take 15% longer than in single pre
ision, and yet the single pre
ision
ommuni
ation / 
omputation ratio (CCR) is 30% less than double pre
ision. The only possible explanationfor this is that the single pre
ision simulations are transferring only half of the data. Therefore, an in
reasein network bandwidth would go a very long way in redu
ing the 
ommuni
ation times. The e�
ien
ies reallydo not look very good, espe
ially in double pre
ision with less than half for 8 GPUs. I did get the 64xspeed-up �nally with 8 GPUs in double pre
ision. Noti
e that for single pre
ision and 2 GPUs, the e�
ien
yshows supers
aling. The only possibility I 
an think of is that the larger problem size and more work perthread hid more of the memory laten
y. It also didn't hurt that the two nodes 
ommuni
ation were adja
ent(assuming hostname numbers indi
ate physi
al proximity).The fa
t that the CCR is less than unity for ea
h of the MPI runs means there is good potential to hide thelaten
y with overlap. One 
ould simply run the internal domain (negle
ting the boundaries whi
h dependon 
ommuni
ated data) of a node while 
ommuni
ating data and then run the outer domain border after5




ommuni
ation. This would probably 
ompletely hide the 
ommuni
ation, and the only penalty would be onthe GPU itself be
ause there are fewer 
ells to spread a
ross the devi
e on the border kernel laun
hes. Thiswould be more di�
ult to do as more GPUs are used and the number of 
ells spread a
ross ea
h be
omessmaller (in a strong s
aling sense).4.2 How many GPUs should I use for 2560x1280?To simplify things by removing the 
ommuni
ation overhead, with the CCR given, 
ommuni
ation takesa proportion of CCR/ (CCR + 1) of the total wall time. Therefore, the speed-up without 
ommuni
ationoverhead will be S
′

= S/MC where MC = 1 − CCR/ (CCR + 1) 
ould be thought of as a 
ommuni
ationpenalty multiplier. Going from one to eight GPUs without 
ommuni
ation has a speed-up of 6.76. Theparallel portion (with 
ommuni
ation extra
ted) of the algorithm 
an be pulled out of Amdahl's law with
p = [n/ (n − 1)] · [(s − 1) /s]. For eight pro
essors, this is p = 0.9738. Using this to obtain S

′ and dividing by
p to get the e�
ien
y, we 
an get an �ideal� pi
ture of maximum speed-up. With 16, 32, and 64 GPUs, I 
anget idealized speed-ups of 72%, 55%, and 38%, respe
tively. So even with a very good networking system,it wouldn't be wise to use more than 16 or 32 GPUs at this resolution before I need to resume Gustafson'ss
aling to keep the e�
ien
y 
onstant.4.3 Translation to Real LifeNow it's time for some ba
k of the envelope 
al
ulations. A 1 degree grid spa
ing 
limate model with 50verti
al levels will have 360x180x50=3.24 million 
ells. The 2560x1280 resolution 2-D run has 3.28 million
ells at a grid spa
ing of 7.8125 meters and a time step of 0.015625 se
onds, and it 
omputes 64,000 timesteps in a wall time of 12,659 se
onds. The ratio 
limate model time step to 2-D model time step is thesame as the ratio of grid spa
ings (whi
h is roughly 14,008). So the 
limate model time step would be 222se
onds, and 64,000 time steps would give a simulation of 164.4 model days. The simulated years per day(SYPD) throughput would, then, be 3.07 SYPD. Keep in mind also that a 3-D model will have 50% morework to do in a time step be
ause of an added dimension of �uxes, making the throughput 2.05 SYPD indouble pre
ision. In single pre
ision, it would be 3.27 SYPD. Assuming the network bandwidth were vastlyimproved to redu
e the CCR to 0.05, then I would have a double pre
ision throughput of 3.53 SYPD and asingle pre
ision throughput of 4.7 SYPD.These are, of 
ourse, ba
k of the envelope 
omputations, and this is only for the dynami
s and doesn't takeinto a

ount the physi
s pa
kages whi
h would be di�
ult to port to GPUs be
ause of extensive use of if/thenlogi
 in some of them. But it seems that e�
ien
y would have to be sa
ri�
ed in order to get the ne
essarythroughput of 5 SYPD. It is also true that my MPI parallelization is highly ine�
ient be
ause it de
omposesthe domain only in one dimension. The CCR is always lower when domain de
omposition is performed inmultiple dimensions rather than one. Also, there are other optimizations su
h as extending the algorithmup to a Courant number of 2 (whi
h I hope to do soon), and this would in
rease the throughput So theredoes seem to be some good hope in GPUs. The thing to be weary of is that on
e I begin Gustafson's s
aling,the throughput will automati
ally 
ut in half be
ause of time stepping 
onstraints. So realisti
ally, I wouldlike to have a solid throughput of around 20 SYPD at 1 degree before problem s
aling so that simulating ataround 28km would still give the required throughput.All of this being said, to have a 1 degree 
limate model running on on 16 or 32 GPUs is very e
onomi
allytempting be
ause the hardware itself is going to be less than $10K. Also, there are many 
ards 
oming outthat are even better than the GTX 280 
ards, and these may push the envelope on speed-up. I have alsoread on message boards (no formal 
on�rmation yet) that ATI graphi
s 
ards are generally 4x better thanNvidia for double pre
ision �op rates. If this is true, then openCL may be the better option.Of 
ourse, I have somewhat treated single pre
ision as if it were not an option. It shows some strongasymmetries for solutions that should be symmetri
, and the pla
ement of some features is very poor. Thisgives me somehesitan
e to use single pre
ision in a real model run. It would have to be demonstrated inpra
ti
e whether or not these asymmetries will adversely a�e
t the overall 
limate simulation sin
e there are6



many other errors in the model that may dominate. If single pre
ision is possible, then memory e�
ien
ywill need to be addressed be
ause a boost in single-GPU �ops will in
rease the throughput quite a bit.5 Future WorkIn the future, I would like to try out openCL on ATI graphi
s 
ards to see if the double pre
ision supportreally is superior. Also, I need to 
hange the domain de
omposition into a 2-D one to further redu
e the CCR.I am 
urrently using fairly simple asyn
hronous sends and re
eives for MPI 
ommuni
ation of the boundaries,and it would be interesting to see if there is a better option for that. Also, sin
e the 
omputation time islarger than 
ommuni
ation time, it would be worthwhile to mask the 
ommuni
ation times with some overlapfrom ea
h node's internal domain whi
h doesn't depend on the boundaries. The algorithm I used for �uxesis intended to extend the time step to any arbitrary (within reason of 
ourse) Courant number to in
reasethroughput. I need to �nish testing this, and if it is possible, it would be a good implementation to in
ludein the CUDA version of the 
ode. Parallel I/O is a must at some point be
ause eventually, the host memorywill over�ow if I/O is done serially. Also, the output is one of the serializing aspe
ts that keeps the parallelfra
tion low in Amdahl's law. The parallel NetCDF library is one option for this. Finally, I would like to seewhat kind of memory optimizations 
an be performed in the kernels to in
rease the �ops. These, together,should a
t to drasti
ally in
rease the throughput.
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