
PARALLEL SYSTEMS PROJECT
CSC 548 HW5, under Dr. Frank Mueller

Submitted by: Kaustubh Prabhu (ksprabhu), Narayanan Subramanian (nsubram), Ritesh Anand (ranand).

Solved Issues:

1. Identification of target loop constructs to be optimized by porting the inner-most functionalities as
CUDA kernels.

2. The task 1 has been done for three major bottleneck functions that were consistently taking major
time across the four major applications in the benchmark.

3. Resolved many linking errors on attempting to port the benchmark application on to CUDA.

Detailed Analysis

 We initially realized that the profiling tool gprof was not giving consistent results for different
runs. We realized that there wasn’t enough computation for 64 nodes in parallel. So, we tried to
get an overview of the application, mainly how to increase the problem size.

 We then found about the –r option which increases the problem size per processor.

Running the application for larger problem sizes, we could now match the hotspots with the ones
we had submitted in Report 1.

 Sample output from the profiler (gprof)

Command line execution -

mpirun –np 64 –machinefile hosts amg2006 –P 4 4 4 [-r 6 6 6] -laplace

Fig 1.1 gprof output

 Then we analyzed the following functions:
1.) hypre_BoomerAMGBuildCoarseOperator
2.) hypre_BoomerAMGRelax
3.) hypre_BoomerAMGCoarsen

Which have nested for loops are the taking longer time duration in every processing element. We
analyzed the loops further using printfs and counters and MPI_Wtime () to see how much the
nested for loops contributed to the total function time.

We identified performance bottleneck from each of these functions are described below –

hypre_BoomerAMGBuildCoarseOperator (AMG2006/parcsr_ls/par_rap.c)

Line No. Type of
Loop

Nested Level of nesting Remarks

541- 741 for Yes 5 Type1
768-1021 for Yes 5 Type1
1148- 1376 for Yes 5 Type1
1427-1747 for Yes 5 Type1

 “Type”: We are using this notation to classify for loops based on structure.

This function contains multiple bottlenecks. Each of the “for” loops is a 5-level nested for loop,
involving computation on different arrays. These for loops are of a single type.

By type, we mean the context of “for” loop. The internal structure of all these loops is similar.
Hence the performance improvement amongst all of them should be consistent.

. hypre_BoomerAMGRelax (AMG2006/parcsr_ls/par_relax.c)

Line No. Type of
Loop

Nested Level of nesting Remarks

189-211 For Yes 2 Type 1
223-247 For Yes 2 Type 1
303-324 For Yes 2 Type 1
336-359 For Yes 2 Type 1
425-464 For Yes 3 Type 2
470-491 For Yes 2 Type 1
511-552 For Yes 3 Type 2
607-655 For Yes 3 Type 2

As we can see, we have 2 types of for loops repeating at several places in this function. We are in
a process to analyze all such loops by their category. Since for loops of a similar kind can be
ported in a similar form of CUDA kernel, the repetition can be exploited.

 hypre_BoomerAMGCoarsen (AMG2006/parcsr_ls/par_coursen.c)

Line No. Type of Loop Nested Level of nesting Remarks
628-827 For Yes 3 Single bottleneck

As we can see, this function contains a single nested for loop, which is identified as the
computational kernel for CUDA.

 We inferred that at the innermost for loop, not significant computation is done. Rather, data is

being structured through these for loops.

 These are the same for loops for which openmp constructs were used in an effort to parallelize
them. We thus realized that, we need to port these for loops to CUDA to get performance
improvement.

Compiling AMG2006 on CUDA

 In an effort to start things on CUDA, we tried to compile the application through CUDA.
 We faced numerous problems because of existent directory structures and header file inclusions.

We are in the process of modifying the make files and linking all the generated AMG specific
libraries to somehow run the application.

 Once this is done, we will have a solid platform to build our CUDA code.

Milestones Achieved:

 Analysis of each function in detail – doing a code walkthrough to understand what each function
does.

Each member analyzed 2 for loops.

 Compiling the application using CUDA.(This activity is 75% complete)
Currently we are not able to include the libraries to be linked. The CUDA build and the AMG
build together is a very complex structure and hence we are spending more time on this to get the
things resolved.

Recent Concerns:

 The nested for loops operate on many arrays which need to be copied to the CUDA device from
the host. We fear that though we will optimize the computation involved, time will be spent on
moving the data in and out of device.

 While running the gprof tools, we found that a big chunk of time is spent in communication

between the nodes. This is validated from the functions like net_send, p4_sockets_ready,
socket_recv which appear as the hotspots in the gmon log file. These functions are a part of some
library and hence we cannot optimize them.

Future Work:

 Compile the application using CUDA.(resolve the pending issues)
 Start porting the for loops into CUDA.
 Analyze the result.
 Repeat the work if needed.

