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Overview

e Welcome

e 8:30am-9:30am Intro to Quantum Computing (Patrick Dreher)
e Postulates of Quantum Mechanics, Linear Algebra, Qubits
e Quantum Simulator

* 9:30 am - 10:00 am Break

e 10:30am-Noon Gate-Level Quantum Computing (Greg Byrd)

 Quantum Gates, Circuits, and Algorithms
e IBM Q Operation
e IBM Q Programming with Qiskit

* Noon-1:00pm Lunch

e 1:00pm-3:00pm Adiabatic Quantum Computing (Frank Mueller)
e Basics of Quantum Annealing and QUBOs
 D-Wave Programming

e 3:00 pm — 3:30 pm Break
e 3:30pm-5:00pm Programming Exercises with IBM Q and D-Wave



Introduction to Quantum

Computing
Programming Quantum Computers:
A Primer with IBM Q and D-Wave Exercises

Patrick Dreher
NC State University
Chief Scientist - NCSU IBM Q Hub




Outline

e Conventional Computer Properties And Characteristics
e Quantum Computer - A New Computational Paradigm
* Designing a Quantum Computer

e Quantum Mechanics

e Linear Algebra

 Quantum Computer Properties And Characteristics

 Example of a Quantum Computer Design and Implementation
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Conventional Computers
Properties And Characteristics

Programming Quantum Computers - ASPLOS Tutorial Patrick

14-April-2019
prt Dreher



Basic Characteristic of a Classical Computer

* Binary data representation for floating point and integer quantities
(HO”S and Hl”S)
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 Hardware is designed and constructed
on this base 2 formalism
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 Binary representations reflect the
lowest level structure for system
and application software
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Representing Information on a Computer

e Computer has two states ( “off” and “on”
e Define two states “0” and “1” ( “bits” )

* Need to be able to represent the state of a system on a computer in only
terms of “0”s and “1”s

* Need to understand how these “0”s and “1”s can be manipulated — how
they are transformed when an operation is applied to them



Single Component Representation

 |dentify general rules for transforming the state of a single bit in every possible

way.
* NOT gate
Initial State Final State
0 not(0) 1
1 not(1) 0

e RESET gate - Sets the state to O regardless of the input

 These two operations define all possible ways to transform the state of a single

bit

14-April-2019

Initial State Final State
0 reset(0) 0
1 reset(1) 0

Programming Quantum Computers - ASPLOS Tutorial Patrick

Dreher




Constraint of the Digital Computing Approach

“...trying to find a computer simulation of physics,
seems to me to be an excellent program to follow
out...and I'm not happy with all the analyses that
go with just the classical theory, because

e nature isn’t classical, dammit

e |f you want to make a simulation of nature, you'd better make it
guantum mechanical, and by golly it's a wonderful problem
because it doesn't look so easy.”

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC
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Richard Feynman’s 1981 Paper

International Journal of Theoretical Physics, Vol. 21, Neos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, {981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is WA Mike’ DEMOUZEs daggested’that ‘nobody would
talk about. I want to talk about the pDLEgﬁiem of simulating physics with

10
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Quantum Computer
A New Computational Paradigm

Programming Quantum Computers - ASPLOS Tutorial Patrick
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“Computing machines resembling the
universal guantum computer could, In
principle, be built and would have many
remarkable properties not reproducible by any
Turing machine ... Complexity theory for [such
machines] deserves further investigation.”

Programming Quantum Computers - ASPLOS Tutorial Patrick
Dreher
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Quantum Mechanics and Computing

If one wants to use quantum mechanics to build a
computer, one must understand and appreciate the
implications how a quantum computer will view and
process the problem



Challenges Conceptualizing

How a Quantum Computer Operates

 Quantum mechanics is not a description of the classical world
* |t describes the physics of the atomic and subatomic world

e Difficult conceptually

 Our human ideas and approaches to problems are influenced by our experiences and
expected behaviors

e All known human experiences and intuition is rooted in our classical world

 Many behaviors in the quantum world have no classical analog



Quantum Computing Challenges

Even if an algorithm or program can be shown
to be based on quantum mechanical systems it
must be demonstrated that the quantum
mechanical algorithm is computationally
superior to the classical equivalent



Quantum Supremacy

Quantum supremacy is the potential ability
of qguantum computing devices to solve problems
that classical computers practically cannot

(measured as superpolynomial speedup over the
best known classical algorithm)
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Foundations of Quantum Computing
eLinear Algebra
* Quantum Mechanics

Programming Quantum Computers - ASPLOS Tutorial Patrick
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Properties of Quantum Mechanics

e Quantum theory is a mathematical model of the physical world

* If the properties of quantum mechanics are going to be applied for
computations, it is essential to recognize that the physical world at the
guantum level exhibits behaviors that have no analogs in people’s
everyday experiences

* In order to properly design qguantum computing devices, algorithms
and programs one must

e understand the properties and behavior of qguantum mechanics and
e the mathematics that describes it
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Properties of Linear Algebra
Applicable for Quantum Computing

Programming Quantum Computers - ASPLOS Tutorial Patrick
Dreher
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Review Basic Linear Algebra Concepts

Vector Space

A vector space is a collection vectors, which may
be added together and multiplied by scalar quantities
and still be a part of the collection of vectors



Review Basic Linear Algebra Concepts

Linear Dependence and Linear Independence

A set of vectors is said to be linearly dependent if one of
the vectors in the set can be defined as a linear
combination of the others

A set of vectors is said to be linearly independent if no
vector in the set can be written according to the
previous statement



Review Basic Linear Algebra Concepts

Basis Vectors

A set of elements (vectors) in a vector space V is called
a basis, or a set of basis vectors, if the vectors are

* [inearly independent

e every vector in the vector space is a linear combination
of this set

A basis is a linearly independent spanning set



Properties and Definitions of a Vector Space

* Given a vector space V containing vectors A, B, C the
following properties apply

e Commutativity [ A+B=B+A |
» Associativity of vector addition [ (A+B)+C=A+(B+C) ]
e Additive identity [0+A=A+0=A] for all A

e Existence of additive inverse: For any A, there exists a
(-A) such that A+(-A)=0



Properties and Definitions of a Vector Space

* Given a vector space V containing vectors A, B, C the
following properties apply

e Scalar multiplication identity [ 1A=A]

e Given scalarsrand s
e Associativity of scalar multiplication [ r(sA)=(rs)A ]
e Distributivity of scalar sums [ (r+s)A=rA+sA ]
e Distributivity of vector sums [ r(A+B)=rA+rB ]



Vector Space and Basis Vectors Properties

 Many linear combinations can be constructed to represent
the states that lie on the surface of the sphere

 Set of all vectors that can lie on the surface of the sphere can
be considered as a vector space

e Use the concept of basis vectors to identify a set of linearly
independent vectors in that vector space with the
requirement that every vector in the vector space is a linear
combination of that set



Review of Linear Algebra

* A set of basis vectors is defined {e; } i=1,...n written in “bra-ket”
notation satisfies

< ei|ej >= 61]
e An arbitrary vector can be written as a linear superposition of basis
states
a = z a; e
[
e The coefficients are determined by the inner product

< erla >=< ek|2ai e; >= Zai < erlei >= ay
i

i

a=zei<ei|a>

i



.
Hilbert Space

* A Hilbert Space is a vector space over the complex numbers with an
inner product <b|a>

* It maps an ordered pair of vectors to the complex numbers with the

following properties
e Positivity <ala>>0 for |a>>0
e Linearity <c|(a]a>+ B|b>) = a<c|a> + B<c|b> where a and B are complex constants
e Skew symmetry <b|a> = (<a|b>)*

e For these discussion the space is complete as expressed by the norm

[1al] = (<a]a>)"?



Postulates of
Quantum Mechanics
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Postulate 1

1. The totality of the mathematical representation of the
state of a system can be quantum mechanically
represented by a ket | #> in the space of states



Postulate 1 Implications for Quantum Computing

Mathematical representation of a quantum system

* Every isolated system has an associated complex vector space with an
inner product that is the state space of the system

e A unit vector in the system’s state space is a state vector that is a
complete description of the physical system



Dirac “bra” and “ket” Notation

 Many texts use Dirac “ket” notation |a> to represent a column vector

and a Dirac “bra” notation to denote the Hermitian conjugate of a

<al=(@ @ . a)

The transpose a' of a column vector a is a row vector

The adjoint a' is the complex conjugate transpose of a column vector a and
is sometimes called the Hermitian conjugate
Unitary matrix U is a complex square matrix whose adjoint equals its inverse
and the product of U adjoint and the matrix U is the identity matrix

Utu =U"1u =1




Postulate 1 Implications for Quantum Computing

* This postulate implies that the superposition of two states in the
Hilbert Space A is again a state of the system.

e Composite System

Given that the Hilbert space of system A is H, and the Hilbert space of
system B is Hy , then the Hilbert space of the composite systems AB is
the “tensor product” H, ® H,



Tensor Product

* Let A and B be represented by the matrix formulations

= B=(5 1)

g h

A®B=

14-April-2019 Programming Quantum Corgrg;t;tsrrs - ASPLOS Tutorial Patrick



Another Surprising Example of Quantum Behavior

Quantum Entanglement

* Quantum entanglement is a phenomenon in quantum
mechanics when
e pairs (groups) of particles are generated and/or interact such that

* Their quantum mechanical individual states cannot be
mathematically described independently of the pair (group) state



Entanglement

Mathematical Framework

e Given two non-interacting systems A and B described by Hilbert
spaces IH, and Hy the composite system is expressed as

H,® Hp
* The state of the composite system is
| LIUA> ® | SUB >

e States of H , and Hy that can be mathematically represented in this
manner are called separable states or product states

|¥ >45= z Cij |1 >aQ | >5

L]
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Basis States

* Define a basis vectors |i>, for IH, and |j>; for Hy

 The composite (product state) can be written in the set of basis

vectors as
¥ >ap= ) €yl >a® | >

L)
A B
W >a= ) 1i> ¥ >5= ) G 1>
l J

* If there exist vectors ¢, ¢;° such that ¢;= ¢/ ¢;° for all states then the
system is considered separable
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Basis States

* If there is at least one pair ¢*, ¢° such that ¢; # ¢ ¢® then the state is
labelled as being entangled

1
e Example — (10>,®|1>. - (|1>,®|0>, )
ﬁIAI 3~ (11>, @ [0>g

Programming Quantum Computers - ASPLOS Tutorial Patrick
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Possible Outcomes for an Entangled System

=(10%,@ |15~ (11>,© 0> )
e 2 observers (Alice and Bob) and a 2 state basis set {|0>, |1>}
 Alice is an observer in system A and Bob is an observer in system B
 Alice makes an observation in {|0>, | 1>} basis = 2 equal outcomes
»>If Alice measures |0>, then system states collapses to |0>,| 1>,
and Bob must measure the |1> state
»>If Alice measures | 1> then system states collapses to | 1>,]|0>;
and Bob must measure the |0> state

» This will happen regardless of the spatial separation of system A and B
» Completely unexpected behavior compared to everyday human
experiences of causality and locality




Postulate 2

2. Every observable attribute of a physical system is
described by an operator that acts on the kets that
describe the system.



Postulate 2 Implications for Quantum Computing

e Acting with an operator on a state in general changes the state.

* There are special states that are not changed (except for being
multiplied by a constant) by the action of an operator

Al¥,>=aly,>

* The numbers “a” are the eigenvalues of the eigenstates



Postulate 3

3. The only possible result of the measurement of an

observable “0" is one of the eigenvalues of the
corresponding operator “ 0



Postulate 3 Implications for Quantum Computing

* This postulate is the basis for describing the discreteness of measured
guantities i.e. “quantized”

* Experimental measurements are described by real numbers

=>» the eigenvalues of quantum operators describing the real world
must be Hermitian

* Hermitian operators are orthogonal = <a;|a,> = §

* They span the space = they form a basis

e An arbitrary state can be expanded as a sum of the eigenstates of a Hermitian
operator (with complex coefficients)

e This implies the property that the set of states are “complete”



Postulate 4

* When a measurement of an observable A is made on a
generic state | >, the probability of obtaining an
eigenvalue g is given by the square of the inner product
of |¥> with the eigenstate |a, >, |<a, |y >|?



Postulate 4 - Implications for Quantum Computing

* The complex number <a_ | > is a “probability amplitude”.
This quantity is not directly measureable

e To obtain an expectation value must square probability
amplitude

* The probability of obtaining some result must be 1.

<¥|¥>=> >Yc*, ¢, <a,la, >
m n

* There are complex coefficients in the probability amplitude
that must be summed and then multiplied to obtain the
expectation value



Postulate 5

5. The operator A corresponding to an observable
that yields a measured value “a, “ will correspond

to the state of the system as the normalized
eigenstate |a_ >



Postulate 5 Implications for Quantum Computing

* This postulate describes the collapse of the wave packet of
probability amplitudes when making a measurement on the

system

4
e A system described by a wave packet | > and measured by an

operator A repeated timeé,will vield a variety of results given
by the probabilities [<a, | >|?

* If many identically prepared systems are measured each
described by the state |a> then the expectation value of the
outcomes is

<a>=),a,Prob(a,) =< al|Ala>
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LSBT Digital Computer Measurements
Versus
Quantum Computing Measurements

 Quantum mechanics probability amplitude is a complex valued
unobservable described by a state vector (wavefunction)

* The probability amplitude has an indeterminate specific value
until a measurement is performed

A measurement collapses the wave packet of all possible
probability amplitudes down to a single measurement while
preserveing the normalization of the state

* Once the system is measured all information prior to that
measurement is permanently lost



.
Digital Computer Measurements

Versus
Quantum Computing Measurements

 Any direct disruptions of the of the quantum computing
calculation will immediately select/collapse the system to a single
value state — all information prior to the measurement is lost

 Digital computing practices of inserting
* |ntermediate print statements

 Checkpoint re-starts
disallowed by quantum mechanics in a quantum computer
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SHLEIEEMY  Digital Computer Measurements
Versus
Quantum Computing Measurements

e Quantum computers output probabillities (expectation values)

e Quantum computer output probability distribution of results for the
calculation given by |<a,| ¢>|

e Quantum computer outputs are statistically independent

e Cannot re-run the quantum computing program a 2" time and always
expect to get exactly same answer



Postulate 6

Dvnamics - Time Evolution of a Quantum Mechanical System

* The evolution of a closed system that evolves over time is expressed
mathematically by a unitary operator that connects the system between
time t, to time t, and that only depends on the times t, and t,

* The time evolution of the state of a closed quantum system is described
by the Schrodinger equation

d
h—|¥ >= H(t)|¥
ih— ¥ >=HO|¥ >



Postulate 6 Implications for Quantum Computing

* Any type of “program” that would represent a step by step evolution
from an initial state on a quantum computer to some final state must
preserve the norm of the state (conservation of probability)

 Requirement that each “step-by-step” evolution must preserve unitarity
(forces constraints for “programming” a quantum computer)

* The requirement of postulate 6 that the quantum mechanical system be
closed for this unitary evolution of the system over time (forces
constraints for “programming” a quantum computer)
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Quantum Computer Properties And Characteristics

Programming Quantum Computers - ASPLOS Tutorial Patrick
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Quantum Mechanical Properties of Single Qubits

Programming Quantum Computers - ASPLOS Tutorial Patrick
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Bits, Qubits and Superposition

e A classical bit defines a state by values
of either “0” or “1” (“on” or “off”)

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC
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Bits, Qubits and Superposition

e A classical bit defines a state by values
of either “0” or “1” (“on” or “off”)

e A quantum bit (qubit) can also have a state of

“0” or “1” but it can also have a possibility of
being described by additional states

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC
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Bits, Qubits and Superposition

e A classical bit defines a state by values
of either “0” or “1” (“on” or “off”)

e A quantum bit (qubit) can also have a state of

“0” or “1” and it can also have a possibility of
being described by additional states
 Qubit can form a superposition state
represented by a vector that is a superposition 20
or linear combination of both a “0” or “1”
la>=a|0>+ B|1> la|2+ |B|2=1

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC
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Basis vectors for One Qubit

* In Dirac notation this is (o and B are complex coefficients)
a=a|0>+B|1> lal?2+ |B|?=1

e a is the probability amplitude of measuring the |0> state and B is the
probability amplitude of measuring the | 1> state

* Common basis is |0 >= ((1)) and |1>= ((1))

* Probability to measure the |0> state is |a|?
* Probability to measure the |1> state is | B2



MatEematical Properties of One Qubit ,

e Uses a data representation known as a qubit with
the property that combinations of “0”s and “1”s

can represent many different values simultaneously
e Canre-write |a>=a|0>+B|1> as |a|*+ [B]°=1

la >= eiy(cos(§)|0 > +ei¢sin(§)|1 >)

——

Bloch Sphere

Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch sphere

e This representation is visualized by states that lie of the surface of a sphere

14-April-2019
prt Dreher
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ﬁatrlx Eepresentations of Single Qubit Transformations

* The matrix representation of single qubit combinations ) jinput, >< output,

e Can construct various 2x2 matrix representations

[ =10>< 0]+ |1 >< 1|=((1))(1 0)+((1))(0 1)=(1

x=10><1+[1><0=(;)0 D+()a o=

z=10><0/-1><1=()a 0-(})0 =]

r=uz=i() 9 = D=0
H = —=[(0> +]1>) < 0]+ (|0 > ~[1>) < 1[] = 12

VZ T(l



Matrix Representations of Single Qubit Transformations

0 1 ‘
PauliX—= X — (1 0) = Oy
PauliY— Y — (? _Ol) = Oy — | Pauli Spin Matrices
Pauliz - Z — ((1) _01) = 07
_
Hadamard — H — \/—15(1 _11)

* Phase shift (R;) gates. Leaves the basis state |0> unchanged and maps |1> to el® | 1> modifying the phase of
the quantum gate. Pictorially traces a horizontal circle on the Bloch Sphere by ¢ radians (line of latitude)

1 0
_ . 10 E - T — T
Phase S (O i) 3 <O e‘Z>



_
Qubits and Gates

* Matrices describe the rotations that takes a qubit from an initial
state to a transformed state

* These rotations that operate on a qubit are labelled as “gates”

e Because qubit states can be represented as points on a sphere,
reversible one-qubit gates can be thought of as rotations of the
Bloch sphere. (quantum gates are often called “rotations”)

* Reversible one qubit gates viewed as rotations in this three
dimensional representation



Classical Gates versus Quantum Gates

A classical computer gate is a logical construction of an
operations represented by binary inputs and an associated
output.

* A quantum gate is a mathematical manipulation of qubits
that adhere to the postulates of quantum mechanics and the
mathematics of linear algebra



&uilding Quantum Computing Gates

e Gates are the building blocks for constructing quantum circuits

 Quantum mechanics restricts the types of gates that can be
constructed

e Quantum circuits are constructed from the combined actions of
unitary transformations and single bit rotations




Imposing Quantum Mechanics on Gate Operations

e A quantum gate must incorporate

 Linear superposition of pure states that includes a phase

e Reversibility - All closed quantum state transformations must be
reversible

e Reversible transformation are described through matrix rotations
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Quantum Computing Gate Operations
Under the Constraints of Quantum Mechanics

e A guantum gate must incorporate

e Unitarity - states evolve over time and are expressed mathematically
by a unitary operator (transformation) for a closed quantum
mechanics system

e Unitary operator U is expressed as a complex square matrix whose
adjoint equals its inverse and the product of U adjoint and the
matrix U is the identity operation

UtU =U"1U =1

e Completeness - unitary matrices preserve the length of vectors




Example of a Reversible One Qubit Gate Operation

INPUT OUTPUT INPUT OUTPUT
0 1 1 0
1 0 0 1

e Single bit NOT gate output can be reversed by applying another NOT gate

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC

66
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So Far So Good for One Qubit
but ....
One Qubit Has Only a Limited Number of Operations

What Does Quantum Mechanics Prescribe for 2 Qubits?
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2 Qubit Gates

Programming Quantum Computers - ASPLOS Tutorial Patrick
Dreher
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_ _
Two Qubit Representation of States

e Two states are represented by a pair of orthonormal 2 vectors

|a> = {1}, | b> ={0
0 1

* The four states are four orthogonal vectors in four dimensions
formed by the tensor products

a>®|a>, |[a>®|b>, |b>®|a>, |b>®|b>

* These states can also be represented by
|aa>, |ab>, |ba>, |bb>



Consequences for Quantum Computing

NAND gate
|HpUtﬂ—} Output
Inputg,——

Al B | Ouatput
for digital computers 00 1
01
1|0
11

* NAND gate is a
fundamental building block

1
1
0

Quantum Computing CASC Spring 2019 Meeting,

20-March-2019 Washington, DC
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Consequences for Quantum Computing

* NAND gate is not reversible

20-March-2019

Output

NAND gate
Inpot, ——
Inputg
AR | Oawyput
Y| O 1
0|1 1
1|0 1
1|1 0

Quantum Computing CASC Spring 2019 Meeting,
Washington, DC

71



Design Reversible 2 Qubit Gate

Controlled-NOT Gate

Matrix representation rules for the CNOT gate

>=[1] |p> _[0] |aa> > |aa> Iba> > |bb>
2 _[0] 10> = |ab> > [ab> |bb> > |ba>
|a> ® |a>
| b> & |b®a>
1 0 0 O
Urnor = 0 1 0 O
0 0 0 1
0 0 1 O
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20-March-2019

ldentity Matrix = Reversibility

/1 0 O O\ 1 0 0 O
0O 1 0 O 0 1 0 O
0 0 0 1 0 0 0 1

\O 0 1 O/ 0 0 1 O

T _
UCNOTUCNOT = |

Quantum Computing CASC Spring 2019 Meeting,
Washington, DC
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Additional Useful Mathematical Operation

Exclusive Disjunction

e Exclusive disjunction of a ®b =(avb) r=(arb)
e Truth table for this operation is

Input
3 b Output
0 0 0
0 1 1
1 0 1
1 1 0

Programming Quantum Computers - ASPLOS Tutorial Patrick

14-April-2019
prt Dreher
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Building a Reversible 2 Qubit Gate

e A two qubit quantum logic gate has a control qubit and a target qubit
 The gate is designed such that if

e the control bit is set to 0 the target bit is unchanged
* The control bit is set to 1 the target qubit is flipped

Input Output
|00> |00>
|01> |01>
| 10> |11>
|11> |10>

e Can be expressed as |a, b>—]a, b ®a>

e The CNOT gate is generally used in guantum computing to generate entangled
states

14-April-2019 Programming Quantum Corg:;t;}tsrrs - ASPLOS Tutorial Patrick
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Quantum Mechanics Surprises Imposed on 2 Qubit Gates

a|0>+B|1>
I } a |00>+B |11>
|0>

L/

* This output is not possible because the general state vector transforms as
a>la> = (+ |0>+2 [1>) (£ |0> +2 [1>)
a>la> = +£2|00> + +2|01> + 2£|10> + 22|11>

(x2  Oand2zx 0)

Cannot design traditional parallel programming equivalents by
copying unknown guantum states in a guantum computer




Leads to The No-Cloning Theorem

It Is Impossible to create an identical copy of an
arbitrary unknown guantum state




Quantum Information - No Cloning
Theorem

e Consider the CNOT quantum gate and a linear superposition state a |0> + B | 1> and an additional bit
initialized to zero

a|0>+B|1>
a |00>+B |11>

|O> o

 Quantum mechanically this output is not possible because the general state vector
la>|a>=(a [0>+B |1>) (a |O>+ B |1>)
|a>|a>=a?|00> + aff|01> + Ba| 10> + B2|11> (o # 0 and Ba # 0)

e The quantum circuit does not copy the part of the state vector with the terms apf|01> + fa|10>

* The No-Cloning Theorem: It is impossible to create an identical copy of an arbitrary unknown quantum state

e This implies that signal fanout is not permitted



Other Controlled Gates

e Controlled U gate is a gate that operates on two qubits in such a way that the
first qubit serves as a control. It maps the basis states as follows

00> - |00>
01> -> |01>
10> =2 |1>@U|0>=|1>®(uy, | 0>+u 4] 1>)
11> - |1>Q U|1> =|1>® (uy, | 0>+u | 1>)

1 0 O 0

0O 1 O 0
C(U) - 0 0 Ugo u01>

0 0 wuwyo uqq

e U represents one of the Pauli matrices ox 0, o,
e Controlled-X, Controlled-Y, Controlled-Z gates




Toffoll Gate

* The Toffoli gate is a 3-bit gate, which is universal for
classical computation

e If the first two bits are in the state |1>, it applies a
Pauli-X (NOT) on the third bit, otherwise the state is left

unchanged |a> —® |a>
| b> R | b>
|c> - |c @ ab>

1-February-2018 Building Blocks for Quantum Computing Patrick Dreher
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Toffoli Gate Truth Table and Matrix

Building Blocks for Quantum Computing Patrick Dreher

INPUT OUTPUT 1 0 0 0 0 0 0 0
ajbjcla|b|c /01000000\
0/0/0/0]0]0 0010 0 0/0 O
010]1]0)0}1 0 001 0 0[0 0
0]1/0]0)110 0 0001 0|0 O
Ojtjtjojt)1 0 000 0 1,0 0
1{0|0|212|0]0O \000000®
110(1(1]10]1 000000<
1110111

1111 (1]1]|60 /

X Gate
Pauli 05 rotation matrix
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Properties of Toffoll Gates

* Toffoli Gate is a reversible gate (i.e. U;tU;=I) or

e Toffoli gate is used to replace a classical circuit with the equivalent
reversible gate

* Two bits are control bits (|a> and |b>) and target bit |c> is flipped as
per the truth table

(a, b,c) 2 (a, b, c®ab) 2 (a, b, ¢
e Toffoli gate and be used to simulate a NAND Gate
|a> T | a>
| b> T | b>

|1> > |1 ab> =" |ab>




Toffoll Gate as a Universal Gate

* A Toffoli gate constructs the AND logic state whenc=0

e A Toffoli gate constructs the NAND whenc=1

* Every Boolean function has a reversible implementation
using Toffoli gates
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Quantum Computing Simulator

e Gotothe URL http://algassert.com/quirk
e Select “Edit Circuit”

| Menu | | Export | | Clear Circuit || Clear ALL | | Undo || Redo | | Make Gate |

Probes Displays Half Tums  Quarter Tums  Eighth Turns  Sixteenths Spinning Parametrized Silly
_ 1 v v | - 1 Y g il _Afe
é /7< Sample Z [swap Z.z 7 2 7 /1 7 a 7 (] 7 8 Zt Zt ZA-Q ZAE 0 2
-Q 1/ 1/ 1/ 1/ 1/ 1/ on In
g 10y[11)¢1]|  [Pensty]Bloch Y v |y v |y vy Yl Y-l YA.'Z yA2 _
= 1 1 1/ 1/ 1/ 1 f
cE s -/ ( =7 /i = = A" '1 'Af'l : wew
RN v B S s R B B RS P D RS B O el
10) ‘// off — T r 1 o
drag gates ONto ¢ A
Circuit T
10) off — u 1
: s ' Fina .
o le | |+«m|-m| |art|oert] [™U|A=#] | «1 | -1 | |ea<s|eas| | +1 ] -1
A |gefaut mod Rl mod R
Q () ® Reverse L B=# +A -A $A=B| EA=zB +A -A
o B |defautt mod R mod R
0 input | R=# A -1
= e e 1 e o Y e i +AB|-AB| |sa-s|eass| | *A |xA
IE R |oefautt mod R} mod R
I SC |57 : . Al _-A
I z £ Grac'|Grad A o
X/Y Probes Order Frequency Inputs Arithmetic Compare Modular Custom Gates
14—Apl’i|—2u¢y

Dreher
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http://algassert.com/quirk
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Questions

Contact Information
Patrick Dreher
Chief Scientist
NCSU IBM Q Quantum Computing Hub
NC State University
padreher@ncsu.edu

Quantum Computing CASC Spring 2019 Meeting,
Washington, DC
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