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Overview
• Welcome
• 8:30am-9:30am Intro to Quantum Computing (Patrick Dreher)

• Postulates of Quantum Mechanics, Linear Algebra, Qubits
• Quantum Simulator

• 9:30 am – 10:00 am Break
• 10:30am-Noon Gate-Level Quantum Computing (Greg Byrd)

• Quantum Gates, Circuits, and Algorithms
• IBM Q Operation
• IBM Q Programming with Qiskit

• Noon-1:00pm Lunch
• 1:00pm-3:00pm Adiabatic Quantum Computing (Frank Mueller)

• Basics of Quantum Annealing and QUBOs
• D-Wave Programming

• 3:00 pm – 3:30 pm  Break
• 3:30pm-5:00pm Programming Exercises with IBM Q and D-Wave
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Introduction to Quantum 
Computing

Programming Quantum Computers:
A Primer with IBM Q and D-Wave Exercises

Patrick Dreher
NC State University

Chief Scientist - NCSU IBM Q Hub
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Outline

• Conventional Computer Properties And Characteristics

• Quantum Computer - A New Computational Paradigm

• Designing a Quantum Computer 
• Quantum Mechanics
• Linear Algebra

• Quantum Computer Properties And Characteristics

• Example of a Quantum Computer Design and Implementation 
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Conventional Computers
Properties And Characteristics
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Basic Characteristic of a Classical Computer

• Binary data representation for floating point and integer quantities   
(“0”s and “1”s)

• Hardware is designed and constructed 
on this base 2 formalism

• Binary representations reflect the 
lowest level structure for system 
and application software
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Representing Information on a Computer
• Computer has two states   ( “off” and “on” )

• Define two states “0” and “1” ( “bits” )

• Need to be able to represent the state of a system on a computer in only 
terms of “0”s and “1”s

• Need to understand how these “0”s and “1”s can be manipulated – how 
they are transformed when an operation is applied to them
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Single Component Representation
• Identify general rules for transforming the state of a single bit in every possible 

way. 
• NOT gate 

• RESET gate - Sets the state to 0 regardless of the input

• These two operations define all possible ways to transform the state of a single 
bit

Initial State Final State
0 not(0) 1
1 not(1) 0

Initial State Final State

0 reset(0) 0

1 reset(1) 0
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Richard Feynman (1981):

“...trying to find a computer simulation of physics, 
seems to me to be an excellent program to follow 
out...and I'm not happy with all the analyses that 
go with just the classical theory, because 
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• nature isn’t classical, dammit

• if you want to make a simulation of nature, you'd better make it 
quantum mechanical, and by golly it's a wonderful problem 
because it doesn't look so easy.”

Constraint of the Digital Computing Approach
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Richard Feynman’s 1981 Paper



Quantum Computer 
A New Computational Paradigm
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David Deutsch (1985):

“Computing machines resembling the 
universal quantum computer could, in 
principle, be built and would have many 
remarkable properties not reproducible by any 
Turing machine … Complexity theory for [such 
machines] deserves further investigation.”
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Quantum Mechanics and Computing  

If one wants to use quantum mechanics to build a
computer, one must understand and appreciate the
implications how a quantum computer will view and
process the problem

20-March-2019 Quantum Computing CASC Spring 2019 Meeting, 
Washington, DC 13



Challenges Conceptualizing 
How a Quantum Computer Operates

• Quantum mechanics is not a description of the classical world

• It describes the physics of the atomic and subatomic world 

• Difficult conceptually
• Our human ideas and approaches to problems are influenced by our experiences and 

expected behaviors
• All known human experiences and intuition is rooted in our classical world

• Many behaviors in the quantum world have no classical analog
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Quantum Computing Challenges

Even if an algorithm or program can be shown 
to be based on quantum mechanical systems it 
must be demonstrated that the quantum 
mechanical algorithm is computationally 
superior to the classical equivalent
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Quantum Supremacy
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Quantum supremacy is the potential ability 
of quantum computing devices to solve problems 
that classical computers practically cannot 
(measured as superpolynomial speedup over the 
best known classical algorithm)



Foundations of Quantum Computing
•Linear Algebra

•Quantum Mechanics
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Properties of Quantum Mechanics 

• Quantum theory is a mathematical model of the physical world

• If the properties of quantum mechanics are going to be applied for 
computations, it is essential to recognize that the physical world at the 
quantum level exhibits behaviors that have no analogs in people’s 
everyday experiences 

• In order to properly design quantum computing devices, algorithms
and programs one must

• understand the properties and behavior of quantum mechanics and 
• the mathematics that describes it 
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Properties of Linear Algebra 
Applicable for Quantum Computing
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Review Basic Linear Algebra Concepts

Vector Space 

A vector space is a collection vectors, which may 
be added together and multiplied by scalar quantities 
and still be a part of the collection of vectors
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Review Basic Linear Algebra Concepts

Linear Dependence and Linear Independence

A set of vectors is said to be linearly dependent if one of 
the vectors in the set can be defined as a linear 
combination of the others

A set of vectors is said to be linearly independent if no 
vector in the set can be written according to the 
previous statement
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Review Basic Linear Algebra Concepts

Basis Vectors 

A set of elements (vectors) in a vector space V is called 
a basis, or a set of basis vectors, if the vectors are 
• linearly independent
• every vector in the vector space is a linear combination 

of this set

A basis is a linearly independent spanning set
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Properties and Definitions of a Vector Space

• Given a vector space V containing vectors A, B, C the  
following properties apply

• Commutativity [ A+B=B+A ]

• Associativity of vector addition [ (A+B)+C=A+(B+C)  ]

• Additive identity  [0+A=A+0=A ]  for all A 

• Existence of additive inverse: For any A, there exists a 
(-A) such that  A+(-A)=0
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Properties and Definitions of a Vector Space
• Given a vector space V containing vectors A, B, C the  

following properties apply

• Scalar multiplication identity [ 1A=A ]

• Given scalars r and s
• Associativity of scalar multiplication [ r(sA)=(rs)A ]
• Distributivity of scalar sums [ (r+s)A=rA+sA ]
• Distributivity of vector sums [ r(A+B)=rA+rB ]
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Vector Space and Basis Vectors Properties

• Many linear combinations can be constructed to represent 
the states that lie on the surface of the sphere

• Set of all vectors that can lie on the surface of the sphere can 
be considered as a vector space

• Use the concept of basis vectors to identify a set of linearly 
independent vectors in that vector space with the 
requirement that every vector in the vector space is a linear 
combination of that set 

14-April-2019 Programming Quantum Computers - ASPLOS Tutorial  Patrick 
Dreher 25



Review of Linear Algebra
• A set of basis vectors is defined {ei } i=1,…n written in “bra-ket” 

notation satisfies

• An arbitrary vector can be written as a linear superposition of basis 
states

• The coefficients are determined by the inner product
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Hilbert Space

• A Hilbert Space is a vector space over the complex numbers with an 
inner product <b|a> 

• It maps an ordered pair of vectors to the complex numbers with the 
following properties

• Positivity <a|a> > 0   for |a> > 0
• Linearity <c|(α|a> + β|b>) =  α<c|a> + β<c|b> where α and β are complex constants
• Skew symmetry <b|a> = (<a|b>)*

• For these discussion the space is complete as expressed by the norm 
||a|| = (<a|a>)1/2
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Postulates of 
Quantum Mechanics



Postulate 1

1. The totality of the mathematical representation of the 
state of a system can be quantum mechanically  
represented by a ket |    > in the space of states
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Postulate 1 Implications for Quantum Computing 

Mathematical representation of a quantum system

• Every isolated system has an associated complex vector space with an 
inner product that is the state space of the system

• A unit vector in the system’s state space is a state vector that is a 
complete description of the physical system
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Dirac “bra” and “ket” Notation

• Many texts use Dirac “ket” notation |a> to represent a column vector

and a Dirac “bra” notation to denote the Hermitian conjugate of  
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|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

𝒂𝒂

< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗

The transpose aT of a column vector a is a row vector
The adjoint is the complex conjugate transpose of a column vector a and 
is sometimes called the Hermitian conjugate
Unitary matrix U is a complex square matrix whose adjoint equals its inverse 
and the product of U adjoint and the matrix U is the identity matrix 

𝒂𝒂†

𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



Postulate 1 Implications for Quantum Computing 

• This postulate implies that the superposition of two states in the 
Hilbert Space A is again a state of the system.

• Composite System
Given that the Hilbert space of system A is HA and the Hilbert space of 
system B is HB , then the Hilbert space of the composite systems AB is 
the “tensor product” HA HB
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Tensor Product 

• Let A and B be represented by the matrix formulations
A=                            B=

a b

A     B = 
c d
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Another Surprising Example of Quantum Behavior
Quantum Entanglement

• Quantum entanglement is a phenomenon in quantum 
mechanics when 

• pairs (groups) of particles are generated and/or interact such that
• Their quantum mechanical individual states cannot be 

mathematically described independently of the pair (group) state
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Entanglement 
Mathematical Framework

• Given two non-interacting systems A and B described by Hilbert 
spaces HA and HB the composite system is expressed as 

HA HB

• The state of the composite system is 
|       >      |        >

• States of HA and HB that can be mathematically represented in this 
manner are called separable states or product states
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Quantum Entanglement 
Basis States

• Define a basis vectors |i>A for HA and |j>B for HB

• The composite (product state) can be written in the set of basis 
vectors as

• If there exist vectors ci
A , cj

B such that cij= ci
A cj

B for all states then the 
system is considered separable
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Quantum Entanglement 
Basis States

• If there is at least one pair ci
A , cj

B such that cij ci
A cj

B then the state is 
labelled as being entangled

• Example
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Possible Outcomes for an Entangled System

• 2 observers (Alice and Bob) and a 2 state basis set {|0>, |1>} 
• Alice is an observer in system A and Bob is an observer in system B
• Alice makes an observation in {|0>, |1>} basis  2 equal outcomes
If Alice measures |0> , then system states collapses to |0>A|1>B

and Bob must measure the |1> state
If Alice measures |1> then system states collapses to |1>A|0>B

and Bob must measure the |0> state

38

(|0>A      |1>B - (|1>A      |0>B ))⊗ ⊗1
2

 This will happen regardless of the spatial separation of system A and B
 Completely unexpected behavior compared to everyday human 

experiences of causality and locality



Postulate 2

2. Every observable attribute of a physical system is 
described by an operator that acts on the kets that 
describe the system.
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Postulate 2 Implications for Quantum Computing 

• Acting with an operator on a state in general changes the state.

• There are special states that are not changed (except for being 
multiplied by a constant) by the action of an operator

A|  > = a|    a >

• The numbers “a” are the eigenvalues of the eigenstates
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Postulate 3

3. The only possible result of the measurement of an 
observable “ “ is one of the eigenvalues of the 
corresponding operator “   “.
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Postulate 3 Implications for Quantum Computing 

• This postulate is the basis for describing the discreteness of measured 
quantities i.e. “quantized”

• Experimental measurements are described by real numbers 
 the eigenvalues of quantum operators describing the real world 

must be Hermitian
• Hermitian operators are orthogonal  <aj|ak> =  jk
• They span the space  they form a basis

• An arbitrary state can be expanded as a sum of the eigenstates of a Hermitian 
operator (with complex coefficients)

• This implies the property that the set of states are “complete”
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Postulate 4

• When a measurement of an observable A is made on a 
generic state |   >, the probability of obtaining an 
eigenvalue an is given by the square of the inner product 
of |   > with the eigenstate |an >, |< an |    >|2
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Postulate 4 - Implications for Quantum Computing

• The complex number <an|    > is a “probability amplitude”.  
This quantity is not directly measureable

• To obtain an expectation value must square probability 
amplitude

• The probability of obtaining some result must be 1. 

• There are complex coefficients in the probability amplitude 
that must be summed and then multiplied to obtain the 
expectation value
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Postulate 5

5. The operator A corresponding to an observable 
that yields a measured value  “an “ will correspond 
to the  state of the system as the normalized 
eigenstate |an >
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Postulate 5 Implications for Quantum Computing 

• This postulate describes the collapse of the wave packet of 
probability amplitudes when making a measurement on the 
system

• A system described by a wave packet |    > and measured by an 
operator A repeated times will yield a variety of results given 
by the probabilities |<an| >|2

• If many identically prepared systems are measured each 
described by the state |a> then the expectation value of the 
outcomes is

< 𝑎𝑎 >≡ ∑𝑛𝑛 𝑎𝑎𝑛𝑛 Pr𝑜𝑜𝑜𝑜(𝑎𝑎𝑛𝑛) =< 𝑎𝑎|a|𝑎𝑎>
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Digital Computer Measurements
Versus 

Quantum Computing Measurements
• Quantum mechanics probability amplitude is a complex valued 

unobservable described by a state vector (wavefunction) 

• The probability amplitude has an indeterminate specific value 
until a measurement is performed

• A measurement collapses the wave packet of all possible 
probability amplitudes down to a single measurement while  
preserveing the normalization of the state

• Once the system is measured all information prior to that 
measurement is permanently lost
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Digital Computer Measurements 
Versus 

Quantum Computing Measurements 
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• Any direct disruptions of the of the quantum computing 
calculation will immediately select/collapse the system to a single 
value state – all information prior to the measurement is lost 

• Digital computing practices of inserting 
• Intermediate print statements
• Checkpoint re-starts 
disallowed by quantum mechanics in a quantum computer



• Quantum computers output probabilities (expectation values)
• Quantum computer output probability distribution of results for the 

calculation given by |<an|    >|2

----------------------------------------------------------------------------------------
• Quantum computer outputs are statistically independent
• Cannot re-run the quantum computing program a 2nd time and always 

expect to get exactly same answer 
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Postulate 6

Dynamics - Time Evolution of a Quantum Mechanical System
• The evolution of a closed system that evolves over time is expressed 

mathematically by a unitary operator that connects the system between 
time t1 to time t2 and that only depends on the times t1 and t2

• The time evolution of the state of a closed quantum system is described 
by the Schrodinger equation
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Postulate 6 Implications for Quantum Computing 
• Any type of “program” that would represent a step by step evolution 

from an initial state on a quantum computer to some final state must 
preserve the norm of the state (conservation of probability)

• Requirement that each “step-by-step” evolution must preserve unitarity
(forces constraints for “programming” a quantum computer)

• The requirement of postulate 6 that the quantum mechanical system be 
closed for this unitary evolution of the system over time (forces 
constraints for “programming” a quantum computer)
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Quantum Computer Properties And Characteristics
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Quantum Mechanical Properties of  Single Qubits
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Bits, Qubits and Superposition
• A classical bit defines a state by values 

of either “0” or “1” (“on” or “off”)
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Bits, Qubits and Superposition
• A classical bit defines a state by values 

of either “0” or “1” (“on” or “off”)
• A quantum bit (qubit) can also have a state of

“0” or “1” but it can also have a possibility of 
being described by additional states
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Bits, Qubits and Superposition
• A classical bit defines a state by values 

of either “0” or “1” (“on” or “off”)
• A quantum bit (qubit) can also have a state of

“0” or “1” and it can also have a possibility of 
being described by additional states

• Qubit can form a superposition state 
represented by a vector that is a superposition 
or linear combination of both a “0” or “1”
|a> = α|0> + β|1> 
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Basis vectors for One Qubit

• In Dirac notation this is (α and β are complex coefficients)
a = α|0> + β|1>         |α|2 + |β|2 = 1

• α is the probability amplitude of measuring the |0> state and β is the 
probability amplitude of measuring the |1> state

• Common basis is                 and                
• Probability to measure the |0> state is |α|2

• Probability to measure the |1> state is |β|2 
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Mathematical Properties of One Qubit
• Uses a data representation known as a qubit with 

the property that combinations of “0”s and “1”s 
can represent many different values simultaneously

• Can re-write |a> = α|0> + β|1> as

Bloch Sphere

• This representation is visualized by states that lie of the surface of a sphere 
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Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch_sphere

|α|2 + |β|2 = 1

|𝑎𝑎 >= 𝑒𝑒𝑖𝑖𝑖𝑖(cos(𝜃𝜃
2

)|0 > +𝑒𝑒𝑖𝑖𝑖𝑖sin(𝜃𝜃
2

)|1 >)

https://en.wikipedia.org/wiki/Bloch_sphere


Matrix Representations of Single Qubit Transformations
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 1
0 0 1 + 0

1 1 0 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1
0 1 0 + 0

1 0 1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of single qubit combinations   

• Can construct various 2x2 matrix representations 

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝒊𝒊

|𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊 >< 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊|

Z = 0 >< 0 − 1 >< 1 = 1
0 1 0 − 0

1 0 1 = 1 0
0 −1



Matrix Representations of Single Qubit Transformations
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Hadamard H
1
2

1 1
1 −1

Pauli X      X

Pauli Y      Y

Pauli Z       Z

0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

=

=

=

𝜎𝜎𝑥𝑥

𝜎𝜎𝑦𝑦

𝜎𝜎𝑧𝑧

Pauli Spin Matrices

Phase        S    1 0
0 𝑖𝑖

T𝜋𝜋
8

1 0
0 𝑒𝑒𝑖𝑖

𝜋𝜋
4

• Phase shift (R  ) gates.  Leaves the basis state |0> unchanged and maps |1> to        |1> modifying the phase of 
the quantum gate.  Pictorially traces a horizontal circle on the Bloch Sphere by     radians (line of latitude)

𝜙𝜙 𝑒𝑒𝑖𝑖𝑖𝑖
𝜙𝜙



Qubits and Gates

• Matrices describe the rotations that takes a qubit from an initial 
state to a transformed state

• These rotations that operate on a qubit are labelled as “gates”

• Because qubit states can be represented as points on a sphere, 
reversible one-qubit gates can be thought of as rotations of the 
Bloch sphere.  (quantum gates are often called “rotations”)

• Reversible one qubit gates viewed as rotations in this three 
dimensional representation
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Classical Gates versus Quantum Gates

• A classical computer gate is a logical construction of an 
operations represented by binary inputs and an associated 
output.

• A quantum gate is a mathematical manipulation of qubits 
that adhere to the postulates of quantum mechanics and the 
mathematics of linear algebra 
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Building Quantum Computing Gates 

• Gates are the building blocks for constructing quantum circuits 

• Quantum mechanics restricts the types of gates that can be 
constructed 

• Quantum circuits are constructed from the combined actions of 
unitary transformations and single bit rotations
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Imposing Quantum Mechanics on Gate Operations 

• A quantum gate must incorporate

• Linear superposition of pure states that includes a phase

• Reversibility - All closed quantum state transformations must be 
reversible

• Reversible transformation are described through matrix rotations
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Quantum Computing Gate Operations 
Under the Constraints of Quantum Mechanics

• A quantum gate must incorporate

• Unitarity - states evolve over time and are expressed mathematically 
by a unitary operator (transformation) for a closed quantum 
mechanics system

• Unitary operator U is expressed as a complex square matrix whose 
adjoint equals its inverse and the product of U adjoint and the 
matrix U is the identity operation 

• Completeness - unitary matrices preserve the length of vectors 
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𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



Example of a Reversible One Qubit Gate Operation 
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• Single bit NOT gate output can be reversed by applying another NOT gate 

INPUT OUTPUT

0 1

1 0

INPUT OUTPUT

1 0

0 1



So Far So Good for One Qubit 

but ….

One Qubit Has Only a Limited Number of Operations

What Does Quantum Mechanics Prescribe for 2 Qubits?
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2 Qubit Gates
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Two Qubit Representation of States

• Two states are represented by a pair of orthonormal 2 vectors  

|a> =       , |b> = 

• The four states are four orthogonal vectors in four dimensions 
formed by the tensor products

|a>   |a>, |a>   |b>, |b>   |a>, |b>   |b>

• These states can also be represented by
|aa>, |ab>, |ba>, |bb>
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1
0

0
1

⊗⊗⊗ ⊗



Consequences for Quantum Computing 

• NAND gate is a
fundamental building block 
for digital computers
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Consequences for Quantum Computing 

• NAND gate is not reversible 
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Design Reversible 2 Qubit Gate
Controlled-NOT Gate
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Matrix representation rules for the CNOT gate

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|b>

|a> |a>

|b    a>⊕

|aa>  |aa> |ba>  |bb>
|ab>  |ab> |bb>  |ba>



Identity Matrix  Reversibility
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1 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

†
CNOT CNOTU U I=



Additional Useful Mathematical Operation 
Exclusive Disjunction

• Exclusive disjunction of a    b =(a   b)      (a   b)
• Truth table for this operation is 
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⊕ ∨ ∧ ¬ ∧

Input
Outputa b

0 0 0

0 1 1

1 0 1

1 1 0



Building a Reversible 2 Qubit Gate
• A two qubit quantum logic gate has a control qubit and a target qubit
• The gate is designed such that if 

• the control bit is set to 0 the target bit is unchanged
• The control bit is set to 1 the target qubit is flipped

• Can be expressed as |a, b>       |a, b     a>
• The CNOT gate is generally used in quantum computing to generate entangled 

states
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⊕

Input Output

|00> |00>

|01> |01>

|10> |11>

|11> |10>



Quantum Mechanics Surprises Imposed on 2 Qubit Gates

• This output is not possible because the general state vector transforms as

|a>|a> = (± |0> + ² |1>) (± |0> + ² |1>) 
|a>|a> = ±2|00> + ±² |01> + ² ±|10> + ² 2|11>        

(±² `  0 and ² ± `  0)
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α |00> + β |11>
α |0> + β |1>

|0>

Cannot design traditional parallel programming equivalents by 
copying unknown quantum states in a quantum computer 
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Leads to The No-Cloning Theorem

It is impossible to create an identical copy of an 
arbitrary unknown quantum state



Quantum Information - No Cloning 
Theorem

• Consider the CNOT quantum gate and a linear superposition state α |0> + β |1> and an additional bit 
initialized to zero

• Quantum mechanically this output is not possible because the general state vector 

|a>|a> = (α |0> + β |1>) (α |0> + β |1>) 
|a>|a> = α2|00> + αβ|01> + βα|10> + β2|11>        (αβ ≠ 0 and βα ≠ 0)

• The quantum circuit does not copy the part of the state vector with the terms αβ|01> + βα|10> 

• The No-Cloning Theorem: It is impossible to create an identical copy of an arbitrary unknown quantum state

• This implies that signal fanout is not permitted
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α |00> + β |11>
α |0> + β |1>

|0>



Other Controlled Gates

• Controlled U gate is a gate that operates on two qubits in such a way that the 
first qubit serves as a control. It maps the basis states as follows

|00>  |00>
|01>  |01>
|10>  |1>    U|0> =|1>    (u00|0>+u10|1>)
|11>  |1>     U|1> =|1>    (u01|0>+u11|1>)

• U represents one of the Pauli matrices 
• Controlled-X, Controlled-Y, Controlled-Z gates
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⊗ ⊗

⊗ ⊗

𝐶𝐶 𝑈𝑈 =

1 0 0 0
0 1 0 0
0 0 𝑢𝑢00 𝑢𝑢01
0 0 𝑢𝑢10 𝑢𝑢11

𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑧𝑧



Toffoli Gate

• The Toffoli gate is a 3-bit gate, which is universal for 
classical computation

• If the first two bits are in the state |1>, it applies a 
Pauli-X (NOT) on the third bit, otherwise the state is left 
unchanged

1-February-2018 Building Blocks for Quantum Computing Patrick Dreher 80

|c>

|b> |b>

|c     ab>⊕

|a> |a>



Toffoli Gate Truth Table and Matrix

INPUT OUTPUT

a b c a’ b’ c’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

X Gate
Pauli       rotation matrix𝜎𝜎𝑥𝑥



Properties of Toffoli Gates

• Toffoli Gate is a reversible gate (i.e. UT
-1UT=I) or 

• Toffoli gate is used to replace a classical circuit with the equivalent 
reversible gate

• Two bits are control bits (|a> and |b>) and target bit |c> is flipped as 
per the truth table

(a, b, c)  (a, b, c    ab)  (a, b, c)
• Toffoli gate and be used to simulate a NAND Gate
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⊕

|1>

|b> |b>

|1     ab> =     |ab>⊕

|a> |a>

¬

¬



Toffoli Gate as a Universal Gate

• A Toffoli gate constructs the AND logic state when c = 0

• A Toffoli gate constructs the NAND when c = 1

• Every Boolean function has a reversible implementation 
using Toffoli gates
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Quantum Computing Simulator
• Go to the URL     http://algassert.com/quirk
• Select “Edit Circuit”
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http://algassert.com/quirk


Questions

Contact Information
Patrick Dreher
Chief Scientist

NCSU IBM Q Quantum Computing Hub
NC State University
padreher@ncsu.edu
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