Programming Quantum Computers:
A Primer with IBM Q and D-Wave Exercises

by Frank Mueller, Patrick Dreher, Greg Byrd
http://moss.csc.ncsu.edu/~mueller/qc/qc-tut

North Carolina State University

_\-‘"\"} b ; 3 "':,’__"A
[\ 3 Electrical and Sl
WNENINE Computer Engineering ‘085~ @617

"’ = WY, %;br\

NC STATE UNIVERSITY

Department of Computer Science

Quantum Programming Tutorial

Overview

e Welcome

e Introduction to Quantum Computing (Patrick Dreher)
— Postulates of Quantum Mechanics, Linear Algebra, Qubits
— Quirk Simulation

o Gate-Level Quantum Computing (Greg Byrd)
— Quantum Gates, Circuits, and Algorithms
— IBM Q Operation
— IBM Q Programming with Qiskit

e Adiabatic Quantum Computing (Frank Mueller)
— Basics of Quantum Annealing and QUBOs
— D-Wave Programming

e Programming Exercises with IBM Q and D-Wave

Quantum Programming Tutorial

What is a computer?

e Mathematical abstraction: a Turing machine
—M={Q,T,b,%,8,q0,F)

-All states, all symbols, blank symbol, input symbols,
transition function, initial state, and final states
-All of the preceding sets are finite, but the memory
("tape") on which they operate is infinite
-Transition function
-Maps {current state, symbol read} to {new state, symbol to
write, left/right}

e Example: "If you're in state A and you see a O, then write a 1,
move to the left, and enter state B"

1011101011

Quantum Programming Tutorial

What else is a computer?

e Nondeterministic Turing machine
— Replace transition function with a transition relation
— Contradictions are allowed

— Example: "If you're in state A and you see a O, then simultaneously
(i) write a 1, move to the left, and enter state B; (ii) write a O, move
to the right, and enter state C; and (iii) write a 1, move to the right,
and enter state B."

— At each step, oracle suggests best path to take (unrealistic!)

e Quantum Turing machine
— Same 7-tuple as in the base Turing machine
— M={Q,T,b,%,3,qo,F)
— But...set of states is a Hilbert space; alphabet is a (different)
Hilbert space; blank symbol is a zero vector; transition function is a

set of unitary matrices; initial state can be in a superposition of
states; final state is a subspace of the Hilbert space

— No change to input/output symbols; those stay classical

Quantum Programming Tutorial

Introduction to Complexity Theory

e What problems can a computer solve quickly?

e Discuss in terms of asymptotic complexity, not wall-clock time
— Ignore constants and all but the leading term

— For input of size n, O(n) can mean 3n seconds or 5n+2 log
n+3/n+20 hours; it doesn't matter

— Polynomial time, O(nk) for any k, is considered good
(efficiently solvable), even if an input of size n takes 1000n2°
years to complete

e Superpolynomial time—most commonly exponential time, O(k") for
k>1—is considered bad (intractable), even if an input of size n
completes in only 2" femtoseconds

Quantum Programming Tutorial

Introduction to Complexity Theory (cont.)

e Categorize problems into complexity classes

— Goal: Determine which complexity classes are subsets or
proper subsets of which other classes (i.e., representing,
respectively, "no harder” or “easier” problems)

— Approach is typically based on reductions: proofs that an
efficient solution to a problem in one class implies an
efficient solution to all problems in another class

e Typically focus on decision problems
— Output is either “yes" or "no”

Quantum Programming Tutorial

Venn Diagram of Common Complexity Classes

NP-hard = Problems at least as hard as those in NP

— Not necessarily decision problems
— Ex.: Given weighted graph, find shortest-length
Hamiltonian path?
e Hardest of the problems in NP

— Ex.: Given set of integers, is there a subset whose
sum is 0?

L3

NP-compIete e “Hard" decision problems

— Can be solved in polynomial time on a
nondeterministic Turing machine

— Solutions can be verified in polynomial time on a
deterministic Turing machine

— Ex.: Does given integer have prime factor whose
last digit is 3?
e "Easy" decision problems

— Can be solved in polynomial time on a deterministic
Turing machine

— Ex.: Does given matrix have an eigenvalue equal to
1.2?

Quantum Programming Tutorial

Quantum [Merlin Arthur] (QMA)
Computing Complexity Classes

NP-hard QMA-hard

QMA-complete

NP-complete

Cannot be solved in polynomial ime on a quantum Turing machine

NP f—> oma

Can be solved in polynomial time on a quantum Turing machine

p . BQP

Quantum Programming Tutorial

What Do We Know?

NP -hard

e Short answer: Almost nothing

e Pvs. NP
— P < NP
— 2?2 P =NP or P = NP; conjectured that P = NP

e NP-intfermediate vs. NP-complete
— NP-intermediate: set of problems in NP but not in NP-complete
— NP-intermediate — NP-complete
— 2?? NP-intermediate = NP-complete

— Implication: If NP-intermediate = NP-complete, then factoring
(NP-intermediate) may in fact be an easy problem, but we just
haven't found a good classical algorithm yet

Quantum Programming Tutorial 9

What Do We Know? (cont.)

NP -hard

e Pvs. BQP
— P < BQP
— ??? P =BQP or P BQP
— Implication: If P = BQP, then quantum offer no substantial (i.e.,
superpolynomial) performance advantage over classical
e NP-complete vs. BQP
— ??? BQP vs. NP-complete; conjectured BQP — NP-complete

— Implication: Believed that quantum computers cannot solve NP-
complete problems in polynomial time

e Initial focus: Quantum supremacy - break complexity class

e Today's focus: Quantum advantage > faster than classical
— By constant factor

Quantum Programming Tutorial 10

It’s Not All Doom and Gloom

e Sure, quantum computers probably can't solve NP-complete
problems in polynomial time

e Still, even a polynomial-time improvement is better than nothing

e Grover's algorithm
— Find an item in an unordered list
— O(n) © O(n)

e Shor's algorithm
— Factor an integer into primes (NP, but not NP-complete)
— 02y > 0((log n)?)

Quantum Programming Tutorial 11

Quantum Architectures

1. Quantum annealer (D-Wave)
— Specialized: optimization problems > find lowest energy level
— Uses tunneling and entanglement
— Better than classical? > unknown, maybe significant speedup

2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ...)
— More general: optimization, quantum chemistry, machine learning
— Superposition, entanglement
— Better than classical? > likely, sign. Speedup: "advantage”

3. Fault-tolerant quantum computer (in "some years" from now)
— Deals w/ errors (noise) algorithmically
— Most general: crypto, search, and any of the above ones
— Need 1000 physical qubits per virtual ("*error-free") qubit
— Better than classical? > proved theoretically: "supremacy”

Quantum Programming Tutorial 12

Quantum Algorithms (Gate Model)

e Key concepts
— N classical bits go in, N classical bits come out
— Can operate on all 2N possibilities in between
— Requirement: Computation must be reversible (hot a big deal
in practice)
— Main challenge: You get only one measurement; how do you
know to measure the answer you're looking for?

— High-level approach: Quantum states based on complex-
valued probability amplitudes, not probabilities—can sum to O
to make a possibility go away

— Very difficult in practice

e Google "quantum algorithm zoo" - 60 algorithms known to date
— Based on only a handful of building blocks

— Each requires substantial cleverness; not much in the way of
a standard approach

Quantum Programming Tutorial 13

Gate model (cont.)

e Examples: IBM Q, Regatti, IonQ, Intel, Google

i VA .|

e Programming = set parameters of physics experiment,
use lasers/radio freq. to energize qubits, observe result

— Lasers/radio freq. triggered by your program Bito4”
— Program = circuit of basic quantum gates
-Quantum: CNOT

-Clock rate in us range

f/ .
classical: NAND] 7
N A T
e 2N states > qubits in "superposition” N /_,./
— IBM Q: 20 qubits > 220 states today \B"UH g
— Qubit: [0>=(), |1>:(?) as column vector >

Bloch sphere
— Superposition: 0 & 1 “at the same time" |y>=q|0>+b|1>, |a|?*|b]2=
— Example: 3 qubits, overall state [y> = aj000>+b|001>+¢c|010>

-Repeat measurement->probability per state: |a|?,|b|?,|c|?
-new results every few ms
Quantum Programming Tutorial

14

Overview

e Welcome

e Introduction to Quantum Computing (Patrick Dreher)
— Postulates of Quantum Mechanics, Linear Algebra, Qubits
— Quirk Simulation

o Gate-Level Quantum Computing (Greg Byrd)
— Quantum Gates, Circuits, and Algorithms
— IBM Q Operation
— IBM Q Programming with Qiskit

e Adiabatic Quantum Computing (Frank Mueller)
— Basics of Quantum Annealing and QUBOs
— D-Wave Programming

e Programming Exercises with IBM Q and D-Wave

Quantum Programming Tutorial

15

