Programming Quantum Computers: A Primer with IBM Q and D-Wave Exercises

by Frank Mueller, Patrick Dreher, Greg Byrd

http://moss.csc.ncsu.edu/~mueller/qc/qc-tut
North Carolina State University

NC STATE UNIVERSITY
 Department of Computer Science

Quantum Programming Tutorial

Electrical and Computer Engineering

Overview

- Welcome
- Introduction to Quantum Computing (Patrick Dreher)
- Postulates of Quantum Mechanics, Linear Algebra, Qubits
- Quirk Simulation
- Gate-Level Quantum Computing (Greg Byrd)
- Quantum Gates, Circuits, and Algorithms
- IBM Q Operation
- IBM Q Programming with Qiskit
- Adiabatic Quantum Computing (Frank Mueller)
- Basics of Quantum Annealing and QUBOs
- D-Wave Programming
- Programming Exercises with IBM Q and D-Wave

What is a computer?

- Mathematical abstraction: a Turing machine
- $M=\{Q, \Gamma, b, \Sigma, \delta, q o, F)$
-All states, all symbols, blank symbol, input symbols, transition function, initial state, and final states
-All of the preceding sets are finite, but the memory
("tape") on which they operate is infinite
-Transition function
-Maps \{current state, symbol read\} to \{new state, symbol to write, left/right\}
- Example: "If you're in state A and you see a 0 , then write a 1, move to the left, and enter state $B^{\prime \prime}$

	1	0	1	0	0	1	1

What else is a computer?

- Nondeterministic Turing machine
- Replace transition function with a transition relation
- Contradictions are allowed
- Example: "If you're in state A and you see a 0 , then simultaneously (i) write a 1 , move to the left, and enter state B; (ii) write a 0 , move to the right, and enter state C; and (iii) write a 1 , move to the right, and enter state B."
- At each step, oracle suggests best path to take (unrealistic!)
- Quantum Turing machine
- Same 7-tuple as in the base Turing machine
- $M=\{Q, \Gamma, b, \Sigma, \delta, q o, F)$
- But...set of states is a Hilbert space; alphabet is a (different) Hilbert space; blank symbol is a zero vector; transition function is a set of unitary matrices; initial state can be in a superposition of states; final state is a subspace of the Hilbert space
- No change to input/output symbols; those stay classical

Introduction to Complexity Theory

- What problems can a computer solve quickly?
- Discuss in terms of asymptotic complexity, not wall-clock time
- Ignore constants and all but the leading term
- For input of size $n, O(n)$ can mean $3 n$ seconds or $5 n+2$ log $n+3 / n+20$ hours; it doesn't matter
- Polynomial time, $O\left(n^{k}\right)$ for any k, is considered good (efficiently solvable), even if an input of size n takes 1000n ${ }^{20}$ years to complete
- Superpolynomial time-most commonly exponential time, $O\left(k^{n}\right)$ for $k>1$-is considered bad (intractable), even if an input of size n completes in only 2^{n} femtoseconds

Introduction to Complexity Theory (cont.)

- Categorize problems into complexity classes
- Goal: Determine which complexity classes are subsets or proper subsets of which other classes (i.e., representing, respectively, "no harder" or "easier" problems)
- Approach is typically based on reductions: proofs that an efficient solution to a problem in one class implies an efficient solution to all problems in another class
- Typically focus on decision problems
- Output is either "yes" or "no"

Venn Diagram of Common Complexity Classes

Problems at least as hard as those in NP

- Not necessarily decision problems
- Ex.: Given weighted graph, find shortest-length Hamiltonian path?
Hardest of the problems in NP
- Ex.: Given set of integers, is there a subset whose sum is 0 ?
"Hard" decision problems
- Can be solved in polynomial time on a nondeterministic Turing machine
- Solutions can be verified in polynomial time on a deterministic Turing machine
- Ex.: Does given integer have prime factor whose last digit is 3?
- "Easy" decision problems
- Can be solved in polynomial time on a deterministic Turing machine
- Ex.: Does given matrix have an eigenvalue equal to 1.2?

Quantum [Merlin Arthur] (QMA) Computing Complexity Classes

Quantum Programming Tutorial

What Do We Know?

- Short answer: Almost nothing
- Pvs. NP

$-P \subseteq N P$
- ??? $P=N P$ or $P \neq N P$; conjectured that $P \neq N P$
- NP-intermediate vs. NP-complete
- NP-intermediate: set of problems in NP but not in NP-complete
-NP-intermediate \subseteq NP-complete
- ??? NP-intermediate $=$ NP-complete
- Implication: If NP-intermediate $=$ NP-complete, then factoring (NP-intermediate) may in fact be an easy problem, but we just haven't found a good classical algorithm yet

What Do We Know? (cont.)

- P vs. $B Q P$
$-P \subseteq B Q P$
- ??? $P=B Q P$ or $P \neq B Q P$
- Implication: If $P=B Q P$, then quantum offer no substantial (i.e., superpolynomial) performance advantage over classical
- NP-complete vs. BQP
- ??? BQP vs. NP-complete; conjectured BQP $\subset N P$-complete
- Implication: Believed that quantum computers cannot solve NPcomplete problems in polynomial time
- Initial focus: Quantum supremacy \rightarrow break complexity class
- Today's focus: Quantum advantage \rightarrow faster than classical
- By constant factor

It's Not All Doom and Gloom

- Sure, quantum computers probably can't solve NP-complete problems in polynomial time
- Still, even a polynomial-time improvement is better than nothing
- Grover's algorithm
- Find an item in an unordered list
$-O(n) \rightarrow O(\sqrt{n})$
- Shor's algorithm
- Factor an integer into primes (NP, but not NP-complete)
$-O\left(2^{\sqrt[3]{n}}\right) \rightarrow O\left((\log n)^{3}\right)$

Quantum Architectures

1. Quantum annealer (D-Wave)

- Specialized: optimization problems \rightarrow find lowest energy level
- Uses tunneling and entanglement
- Better than classical? \rightarrow unknown, maybe significant speedup

2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ...)

- More general: optimization, quantum chemistry, machine learning
- Superposition, entanglement
- Better than classical? \rightarrow likely, sign. Speedup: "advantage"

3. Fault-tolerant quantum computer (in "some years" from now)

- Deals w/ errors (noise) algorithmically
- Most general: crypto, search, and any of the above ones
- Need 1000 physical qubits per virtual ("error-free") qubit
- Better than classical? \rightarrow proved theoretically: "supremacy"

Quantum Algorithms (Gate Model)

- Key concepts
- N classical bits go in, N classical bits come out
- Can operate on all 2^{N} possibilities in between
- Requirement: Computation must be reversible (not a big deal in practice)
- Main challenge: You get only one measurement; how do you know to measure the answer you're looking for?
- High-level approach: Quantum states based on complexvalued probability amplitudes, not probabilities-can sum to 0 to make a possibility go away
- Very difficult in practice
- Google "quantum algorithm zoo" $\rightarrow 60$ algorithms known to date
- Based on only a handful of building blocks
- Each requires substantial cleverness; not much in the way of a standard approach

Gate model (cont.)

- Examples: IBM Q, Regatti, IonQ, Intel, Google...
- Programming = set parameters of physics experiment, use lasers/radio freq. to energize qubits, observe result
- Lasers/radio freq. triggered by your program Biti $0^{(1)} \psi^{2}$
- Program = circuit of basic quantum gates -Quantum: CNOT ..., classical: NAND ... -Clock rate in us range
- 2^{N} states \rightarrow qubits in "superposition"
- IBM Q: 20 qubits $\rightarrow 2^{20}$ states today
- Qubit: $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}$ as column vector $\rightarrow \quad$ Bloch sphere
- Superposition: 0 \& 1 " $a t$ the same time" $|\psi>=a| 0>+\left.b\left|1>,|a|^{2+}\right| b\right|^{2}=1$
- Example: 3 qubits, overall state $|\psi>=a| 000>+b|001>+c| 010>\ldots$ -Repeat measurement \rightarrow probability per state: $|a|^{2},|b|^{2},|c|^{2}$ -new results every few ms

Overview

- Welcome
- Introduction to Quantum Computing (Patrick Dreher)
- Postulates of Quantum Mechanics, Linear Algebra, Qubits
- Quirk Simulation
- Gate-Level Quantum Computing (Greg Byrd)
- Quantum Gates, Circuits, and Algorithms
- IBM Q Operation
- IBM Q Programming with Qiskit
- Adiabatic Quantum Computing (Frank Mueller)
- Basics of Quantum Annealing and QUBOs
- D-Wave Programming
- Programming Exercises with IBM Q and D-Wave

