
Programming Quantum Computers:
A Primer with IBM Q and D-Wave Exercises

by Frank Mueller, Patrick Dreher, Greg Byrd

1Quantum Programming Tutorial

http://moss.csc.ncsu.edu/~mueller/qc/qc-tut

North Carolina State University

Overview

� Welcome

� Introduction to Quantum Computing (Patrick Dreher)

— Postulates of Quantum Mechanics, Linear Algebra, Qubits

— Quirk Simulation

� Gate-Level Quantum Computing (Greg Byrd)

2Quantum Programming Tutorial

� Gate-Level Quantum Computing (Greg Byrd)

— Quantum Gates, Circuits, and Algorithms

— IBM Q Operation

— IBM Q Programming with Qiskit

� Adiabatic Quantum Computing (Frank Mueller)

— Basics of Quantum Annealing and QUBOs

— D-Wave Programming

� Programming Exercises with IBM Q and D-Wave

What is a computer?

� Mathematical abstraction: a Turing machine

— M = {Q, Γ, b, Σ, δ, qo, F)

–All states, all symbols, blank symbol, input symbols,
transition function, initial state, and final states

–All of the preceding sets are finite, but the memory
(“tape”) on which they operate is infinite

3Quantum Programming Tutorial

(“tape”) on which they operate is infinite

–Transition function

–Maps {current state, symbol read} to {new state, symbol to
write, left/right}

� Example: “If you’re in state A and you see a 0, then write a 1,
move to the left, and enter state B”

What else is a computer?

� Nondeterministic Turing machine
— Replace transition function with a transition relation
— Contradictions are allowed
— Example: “If you’re in state A and you see a 0, then simultaneously

(i) write a 1, move to the left, and enter state B; (ii) write a 0, move
to the right, and enter state C; and (iii) write a 1, move to the right,
and enter state B.”

4Quantum Programming Tutorial

and enter state B.”
— At each step, oracle suggests best path to take (unrealistic!)

� Quantum Turing machine
— Same 7-tuple as in the base Turing machine
— M = {Q, Γ, b, Σ, δ, qo, F)
— But…set of states is a Hilbert space; alphabet is a (different)

Hilbert space; blank symbol is a zero vector; transition function is a
set of unitary matrices; initial state can be in a superposition of
states; final state is a subspace of the Hilbert space

— No change to input/output symbols; those stay classical

Introduction to Complexity Theory

� What problems can a computer solve quickly?

� Discuss in terms of asymptotic complexity, not wall-clock time

— Ignore constants and all but the leading term

— For input of size n, O(n) can mean 3n seconds or 5n+2 log
n+3/n+20 hours; it doesn’t matter

— Polynomial time, O(nk) for any k, is considered good

5Quantum Programming Tutorial

— Polynomial time, O(nk) for any k, is considered good
(efficiently solvable), even if an input of size n takes 1000n20

years to complete

� Superpolynomial time—most commonly exponential time, O(kn) for
k>1—is considered bad (intractable), even if an input of size n
completes in only 2n femtoseconds

Introduction to Complexity Theory (cont.)

� Categorize problems into complexity classes

— Goal: Determine which complexity classes are subsets or
proper subsets of which other classes (i.e., representing,
respectively, “no harder” or “easier” problems)

— Approach is typically based on reductions: proofs that an
efficient solution to a problem in one class implies an

6Quantum Programming Tutorial

efficient solution to a problem in one class implies an
efficient solution to all problems in another class

� Typically focus on decision problems
— Output is either “yes” or “no”

Venn Diagram of Common Complexity Classes

� Problems at least as hard as those in NP
— Not necessarily decision problems
— Ex.: Given weighted graph, find shortest-length

Hamiltonian path?

� Hardest of the problems in NP
— Ex.: Given set of integers, is there a subset whose

sum is 0?

7Quantum Programming Tutorial

� “Hard” decision problems
— Can be solved in polynomial time on a

nondeterministic Turing machine
— Solutions can be verified in polynomial time on a

deterministic Turing machine
— Ex.: Does given integer have prime factor whose

last digit is 3?

� “Easy” decision problems
— Can be solved in polynomial time on a deterministic

Turing machine
— Ex.: Does given matrix have an eigenvalue equal to

1.2?

Quantum [Merlin Arthur] (QMA)
Computing Complexity Classes

8Quantum Programming Tutorial

What Do We Know?

� Short answer: Almost nothing

� P vs. NP
— P ⊆ NP
— ??? P = NP or P ≠ NP; conjectured that P ≠ NP

9Quantum Programming Tutorial

— ??? P = NP or P ≠ NP; conjectured that P ≠ NP

� NP-intermediate vs. NP-complete
— NP-intermediate: set of problems in NP but not in NP-complete
— NP-intermediate ⊆ NP-complete
— ??? NP-intermediate = NP-complete
— Implication: If NP-intermediate ≠ NP-complete, then factoring

(NP-intermediate) may in fact be an easy problem, but we just
haven’t found a good classical algorithm yet

What Do We Know? (cont.)

� P vs. BQP
— P ⊆ BQP
— ??? P = BQP or P ≠ BQP
— Implication: If P = BQP, then quantum offer no substantial (i.e.,

superpolynomial) performance advantage over classical

10Quantum Programming Tutorial

— Implication: If P = BQP, then quantum offer no substantial (i.e.,
superpolynomial) performance advantage over classical

� NP-complete vs. BQP
— ??? BQP vs. NP-complete; conjectured BQP ⊂ NP-complete
— Implication: Believed that quantum computers cannot solve NP-

complete problems in polynomial time

� Initial focus: Quantum supremacy � break complexity class

� Today’s focus: Quantum advantage � faster than classical
— By constant factor

It’s Not All Doom and Gloom

� Sure, quantum computers probably can’t solve NP-complete
problems in polynomial time

� Still, even a polynomial-time improvement is better than nothing

� Grover’s algorithm
— Find an item in an unordered list

11Quantum Programming Tutorial

— Find an item in an unordered list
— O(n) � O(√n)

� Shor’s algorithm
— Factor an integer into primes (NP, but not NP-complete)
— O(2 √n) � O((log n)3)

3

Quantum Architectures

1. Quantum annealer (D-Wave)
— Specialized: optimization problems � find lowest energy level
— Uses tunneling and entanglement
— Better than classical? � unknown, maybe significant speedup

2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ…)

12Quantum Programming Tutorial

2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ…)
— More general: optimization, quantum chemistry, machine learning
— Superposition, entanglement
— Better than classical? � likely, sign. Speedup: “advantage”

3. Fault-tolerant quantum computer (in “some years” from now)
— Deals w/ errors (noise) algorithmically
— Most general: crypto, search, and any of the above ones
— Need 1000 physical qubits per virtual (“error-free”) qubit
— Better than classical? � proved theoretically: “supremacy”

Quantum Algorithms (Gate Model)

� Key concepts
— N classical bits go in, N classical bits come out
— Can operate on all 2N possibilities in between
— Requirement: Computation must be reversible (not a big deal

in practice)
— Main challenge: You get only one measurement; how do you

13Quantum Programming Tutorial

— Main challenge: You get only one measurement; how do you
know to measure the answer you’re looking for?

— High-level approach: Quantum states based on complex-
valued probability amplitudes, not probabilities—can sum to 0
to make a possibility go away

— Very difficult in practice

� Google “quantum algorithm zoo” � 60 algorithms known to date
— Based on only a handful of building blocks
— Each requires substantial cleverness; not much in the way of

a standard approach

Gate model (cont.)

� Examples: IBM Q, Regatti, IonQ, Intel, Google…

� Programming = set parameters of physics experiment,
use lasers/radio freq. to energize qubits, observe results
— Lasers/radio freq. triggered by your program
— Program = circuit of basic quantum gates

–Quantum: CNOT …, classical: NAND …

Bit 0

14Quantum Programming Tutorial

–Quantum: CNOT …, classical: NAND …
–Clock rate in us range

� 2N states � qubits in “superposition”
— IBM Q: 20 qubits � 220 states today
— Qubit: |0>=(), |1>=() as column vector � Bloch sphere
— Superposition: 0 & 1 “at the same time” |ψ>=a|0>+b|1>, |a|2+|b|2=1
— Example: 3 qubits, overall state |ψ> = a|000>+b|001>+c|010>…

–Repeat measurement�probability per state: |a|2,|b|2,|c|2

–new results every few ms

Bit 1

1
0

0
1

Overview

� Welcome

� Introduction to Quantum Computing (Patrick Dreher)

— Postulates of Quantum Mechanics, Linear Algebra, Qubits

— Quirk Simulation

� Gate-Level Quantum Computing (Greg Byrd)

15Quantum Programming Tutorial

� Gate-Level Quantum Computing (Greg Byrd)

— Quantum Gates, Circuits, and Algorithms

— IBM Q Operation

— IBM Q Programming with Qiskit

� Adiabatic Quantum Computing (Frank Mueller)

— Basics of Quantum Annealing and QUBOs

— D-Wave Programming

� Programming Exercises with IBM Q and D-Wave

