Quantum Annealing

some slides originate from Scott Pakin (LANL)

CSC 591-050/ECE 592-050

Quantum Architectures

- 1. Quantum annealer (D-Wave)
 - Specialized: optimization problems \rightarrow find lowest energy level
 - Uses tunneling and entanglement
 - Better than classical? \rightarrow unknown, maybe significant speedup
- 2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ...)
 - More general: optimization, quantum chemistry, machine learning
 - Superposition, entanglement
 - Better than classical? \rightarrow likely, sign. speedup for more problems
- 3. Fault-tolerant quantum computer (in some years from now)
 - Deals w/ errors (noise) algorithmically
 - Most general: crypto, search, and any of the above ones
 - Need 1000 physical qubits per virtual ("error-free") qubit
 - Better than classical? \rightarrow proved theoretically

Outline

- Performance potential of quantum computing
- Quantum annealing
- Case study: D-Wave quantum annealers
- How to program a quantum annealer
- Example: Map coloring

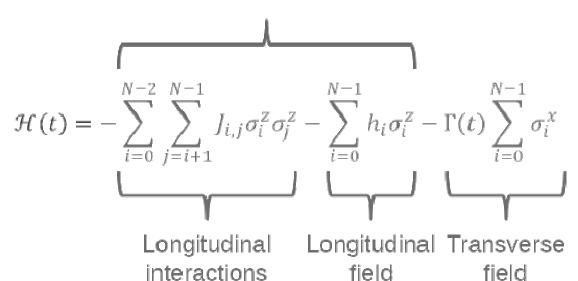
Simulated Annealing

- Classical (and classic) optimization approach
- Find the coordinates of the minimum value in an energy landscape
- Conceptual approach
 - Drop a bunch of rubber balls on the landscape, evaluating the function wherever they hit
 - Hope that one of the balls will bounce and roll downhill to the global minimum
- Challenge: Commonly get stuck in a local minimum

592-050

Quantum Mechanics to the Rescue

• Consider adding a time-dependent transverse field to a 2-local Ising Hamiltonian: \mathcal{H}_0 (classical part)



- Implication of adiabatic theorem: Let's gradually decrease amplitude of transverse field, Γ(t), from a very large value to 0 → should drive system into ground state of H₀
- The real benefit: quantum tunneling

Quantum Tunneling

- Introduced by the $\Gamma(t)$ (transverse) term
- \bullet Enables jumping from one classical state (eigenstate of H_0) to another
 - Decreases likelihood of getting stuck in a local minimum
- Unlike simulated annealing, width of energy barrier is important, but height is not

Time Evolution

- If purely adiabatic and sufficiently slow, system remains in ground state as it moves from initial, "generic" Hamiltonian to problem Hamiltonian
- D-Wave's initial state
 - Ground state (not degenerate): |+>|+>|+>...|+>
 - 1st excited state (^N₁)-way degenerate:
 |->|+>|+>... |+>,|+>|->|+>... |+>, |+>|+>|->... |+>,..., |+>|+>|+>|+>... |->
 - 2nd excited state ($\frac{N}{2}$)-way degenerate: :
 - |->|->|+>... |+>,|->|+>|->... |+>, |+>|->|->... |+>,..., |+>|+>|+>|+>... |->

- etc.

A Brief Aside

- What we just saw is adiabatic quantum optimization
 - Optimization problem is to find the $\sigma_i{}^z \in \{-1,+1\}$ that minimize H_0
- A more powerful variation is adiabatic quantum computing

$$\mathcal{H}_{ZZXX} = \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} J_{i,j} \sigma_i^z \sigma_j^z + \sum_{i=0}^{N-1} h_i \sigma_i^z + \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} K_{i,j} \sigma_i^x \sigma_j^x + \sum_{i=0}^{N-1} \Delta_i \sigma_i^x \sigma_j^x + \sum_{i=0}^{N-1} \Delta_i \sigma_i^x \sigma_i^x + \sum_{i=0}^{N-1} \Delta_i \sigma_i^x + \sum_{i=0}^{N-1} \Delta_$$

- "[A]diabatic quantum computation (error free) is equivalent to the quantum circuit model (error free). So adiabatic quantum computers (error free) are quantum computers (error free) in the most traditional sense." — Dave Bacon, 27Feb2007
- Let's consider only adiabatic quantum optimization for now
 - That's all that's been built to date at large scale
 - Gate model follows later \rightarrow smaller scale

Annealing Time

- From a few slides back: Let's gradually decrease amplitude of transverse field, Γ(t), from a very large value to 0 → should drive system into ground state of H₀
- What does "gradually" mean? \rightarrow (Explanation from Farhi & Gutmann)
 - H(t) encodes our problem
 - Want to evolve system according to Schrödinger, $i\frac{d}{dt}|\psi\rangle$ =H(t) $|\psi\rangle$
 - Given that H(t) has one eigenvalue E≠0 and rest 0, find eigenvector |w> with eigenvector E
 - Assume we're given an orthonormal basis {|a>} with a=1,...,N and that |w> is one of those N basis vectors
 - Let $|s>=\frac{1}{\sqrt{N}}\Sigma^{N}_{a=1}|a>$
 - We consider Hamiltonian H=E|w><w|+E|s><s| (i.e., problem+driver)
 - Let $x = \langle s | w \rangle$
 - Then, omitting a lot of math, we wind up with the probability at time t of finding the state |w> being Pr(t)=sin²(Ext)+x²cos²(Ext)
 - To find state |w> with (near) certainty

we need to run for time $t_m = \frac{\pi}{2E_{xt}}$

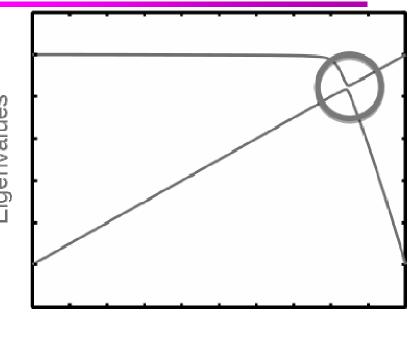
CSC 591-050/ECE 592-050

Determining the Annealing Time

- Unfortunately, we don't generally know how long we need to run (i.e., we can't quickly compute t_m)
- (i.e., we can't quickly compute f_m) Function of minimum gap b/w two smallest eigenvalues at any point during the Hamiltonian's time evolution Function of minimum gap b/w
- Gap can get guite small
- Grover's search (right)
 - Find an n-bit number such that

$$H_{p} |z\rangle = \begin{cases} |z\rangle \text{ if } z \neq w \\ 0 \text{ if } z = w \end{cases}$$

- (0 if z = w
- for some black-box Hamiltonian H_p
- Here, $g_{\min} \simeq 2^{1-\frac{1}{2}}$ for n bits
- Implication: Solution time is $O(2^n)$ no better than classical brute force



Two lowest eigenvalues for a Grover search, 12 bits

Image credit: Farhi, Goldstone, Gutmann, and Sipser (2000)

Annealing Time: Discussion

The bad

- Very difficult to analyze an algorithm's computational complexity
 - Need to know the gap between the ground state and first excited state, which can be costly to compute
 - In contrast, circuit-model algorithms tend to be more straightforward to analyze
- Unknown if quantum annealing can outperform classical
 - If gap always shrinks exponentially then no
 - (Known that in adiabatic quantum computing the gap shrinks polynomially)

Annealing Time: Discussion (cont.)

The good

- Constants do matter
 - If the gap is such that a correct answer is expected only once every million anneals, and an anneal takes 5µs, that's still only 5s to get a correct answer—may be good enough
 - On current systems, the gap scaling may be less of a problem than the number of available qubits
- We may be able to (classically) patch the output to get to the ground state
 - Hill climbing or other such approaches may help get quickly from a near-groundstate solution into the ground state
- We may not even need the exact ground state
- For many optimization problems, "good and fast" may be preferable to "perfect but slow"

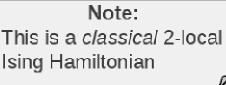
Outline

- Performance potential of quantum computing
- Quantum annealing
- Case study: D-Wave quantum annealers
- How to program a quantum annealer
- Example: Map coloring

D-Wave's Hamiltonian

• Problem Hamiltonian (longitudinal field):

$$\mathcal{H}_{i^{p}} = \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} J_{i,j} \sigma_{i}^{z} \sigma_{j}^{z} + \sum_{i=0}^{N-1} h_{i} \sigma_{i}^{z}$$



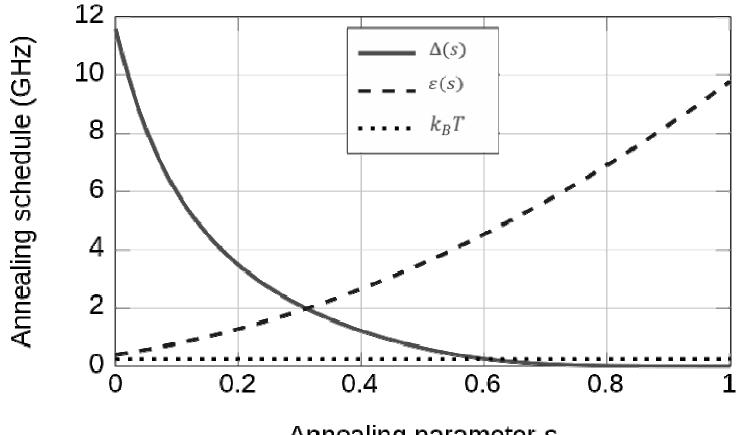
— programmer specifies $J_{i,j}$ and h_i , system solves for σ_i^z

- Nominally, $J_{i,j} \in \mathbb{R}$ and $h_i \in \mathbb{R}$, but hardware limits to a small set of distinguishable values in ranges $J_{i,j} \in [-1,+1]$ and $h_i \in [-2,+2]$
- Application of the time-dependent transverse field:

$$\mathcal{H}_{S}(s) = \frac{\varepsilon(s)}{2} \mathcal{H}_{P} - \frac{\Delta(s)}{2} \sum_{n=1}^{N-1} \sigma_{n}^{n}$$

- Programmer specifies total annealing time, $T \in [5,2000] \mu s$
- -s=t/T (i.e., time normalized to [0, 1])
- $-\epsilon(s)$ and $\Delta(s)$ are scaling parameters (not previously user-controllable but most recent hardware provides a modicum of control over the shape)

D-Wave's Annealing Schedule



Annealing parameter s

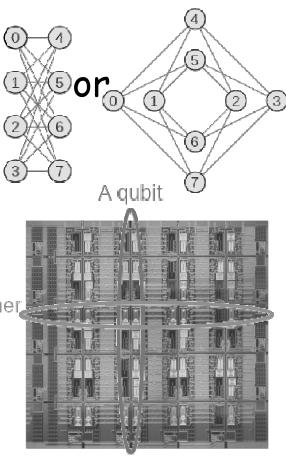
Building Block: The Unit Cell

Logical topology

— 8 qubits arranged in a bipartite graph

- Physical implementation
 - Based on rf-SQUIDs
 - Flux qubits are long loops of superconducting wire interrupted by a set of Josephson junctions (weak links in superconductivity)
 - "Supercurrent" of Cooper pairs of electrons, condensed to a superconducting condensate, flows through the wires
 - Large ensemble of pairs behaves as a single quantum state w/ net positive/negative flux
 - ... or a superposition of the two (w/ tunneling)
 - Entanglement introduced at qubit intersections

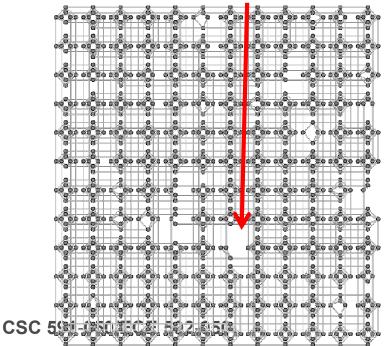
Logical view



A Complete Chip

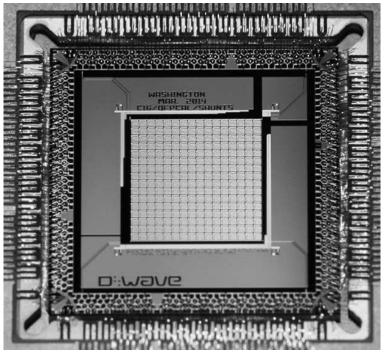
Logical view

- "Chimera graph": 16×16 unit-cell grid
- Qubits 0-3 couple to north/south neighbors; 4-7 to east/west
- Incomplete/defects(not in 2k machine)



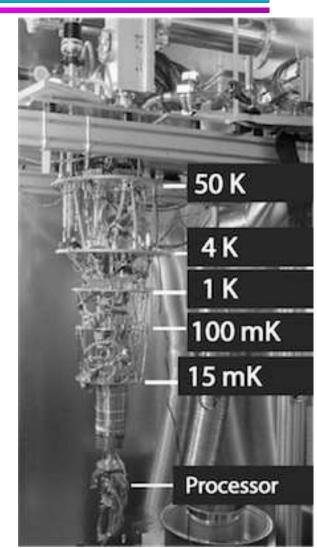
Physical view

- Chip is about the size of a small fingernail
- Can even make out unit
 cells with the naked eye



Cooling

- Chip must be kept extremely cold for macroscopic circuit to behave like a two-level (qubit) system
 - Much below superconducting transition temperature (9000 mK for niobium)
- Dilution refrigerator
- Nominally runs at 15 mK
- LANL's D-Wave 2X runs at 10.45 mK
 - That's 0.01°C above absolute zero
 - For comparison, interstellar space is far warmer: 2700 mK



What You Actually See

- A big, black box
 - 10'×10'×12' (3m×3m×3.7m)
 - Mostly empty space
 - Radiation shielding, dilution refrigerator, chip + enclosure, cabling, tubing
 - LANL also had to add a concrete slab underneath to reduce vibration
- Support logic
 - Nondescript classical computers
 - Send/receive network requests, communicate with the chip, ...

Deviation from the Theoretical Model

- No all-to-all connectivity
 - Each qubit can be directly coupled to at most 6 other qubits
 - Qubits/couplers are absent (irregular, installation-specific)
- Not running at absolute zero
- Not running in a perfect vacuum
- No error correction
- We can therefore think of our Hamiltonian as being

$$\mathcal{H}_{S}(s) = \frac{\varepsilon(s)}{2} \left(\sum_{\langle i,j \rangle} J_{i,j} \sigma_{i}^{z} \sigma_{j}^{z} + \sum_{\langle i \rangle} h_{i} \sigma_{i}^{z} \right) - \frac{\Delta(s)}{2} \sum_{\langle i \rangle} h_{i} \sigma_{i}^{x} + \mathcal{H}_{?}(s)$$

where $H_{2}(s)$ encapsulates the interaction with the environment

- i.e., all things we don't know and can't practically measure
- Nonlinear and varies from run to run
- takes time to set up a problem and get results back
 - Before: reset + programming + post-programming thermalization
 - After: readout

— these dominate annealing time by many orders of magnitude csc 591-050/ECE 592-050

Summary

- Is any quantum computer today faster than a modern classical computer?
 - No, not for any real problem today
 - Read fine print: Google's 108X speedup for a D-Wave-friendly problem vs. non-optimal classical algorithm on single core
- Will quantum computers eventually outperform classical computers?
 - Likely, but not guaranteed
 - For adiabatic quantum optimization, more murky answers...
 - -Instead of $O(2^n) \rightarrow O(n^k)$, may see speedup by sign. linear factor
- Gate model hard to program \rightarrow no std techniques
 - how to represent data, write algorithms? \rightarrow art of quantum pgm.
- Need methods, tools, collection of algorithms, appl. Areas

Summary (cont.)

- Some opportunities may arise:
 - Given NP-complete (or NP-hard) problem

Easy Hard	Slow Fast	exact Approximate
Hard	Fast	Approximate
		• •
Easy	Fast	Approximate
Hard	Maybe faster	Approximate
Tough!	Much faster	Exact
ł	Hard	Hard Maybe faster

- FT-quantum computer \rightarrow "quantum supremacy" $O(2^n) \rightarrow O(n^k)$
- > For now: QC are expensive accelerators (other than GPU/FPGA)
 - Any (linear, large factor) speedup is a big win
 - But classical will improve speed as well, watch out!