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Quantum Annealing

some slides  originate 
from Scott Pakin (LANL)
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Quantum Architectures

1. Quantum annealer (D-Wave)

— Specialized: optimization problems � find lowest energy level

— Uses tunneling and entanglement

— Better than classical? � unknown, maybe significant speedup

2. Approximate quantum [gate] computer (IBM Q, Regetti, IonQ…)

— More general: optimization, quantum chemistry, machine learning

— Superposition, entanglement

— Better than classical? � likely, sign. speedup for more problems

3. Fault-tolerant quantum computer (in some years from now)

— Deals w/ errors (noise) algorithmically

— Most general: crypto, search, and any of the above ones

— Need 1000 physical qubits per virtual (“error-free”) qubit

— Better than classical? � proved theoretically
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Outline

� Performance potential of quantum computing

� Quantum annealing

� Case study: D-Wave quantum annealers

� How to program a quantum annealer

� Example: Map coloring
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Simulated Annealing

� Classical (and classic) optimization approach

� Find the coordinates of the minimum value in an energy landscape

� Conceptual approach

— Drop a bunch of rubber balls on the landscape, evaluating the 
function wherever they hit

— Hope that one of the balls will bounce and roll downhill to the 
global minimum

� Challenge: Commonly get stuck in a local minimum
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Quantum Mechanics to the Rescue

� Consider adding a time-dependent transverse field to a 2-local Ising 
Hamiltonian:

� Implication of adiabatic theorem:
Let’s gradually decrease amplitude of transverse field, Γ(t), from a 
very large value to 0 � should drive system into ground state of H0

� The real benefit: quantum tunneling



6CSC 591-050/ECE 592-050

Quantum Tunneling

� Introduced by the Γ(t) (transverse) term

� Enables jumping from one classical state (eigenstate of H0) to 
another

— Decreases likelihood of getting stuck in a local minimum

� Unlike simulated annealing, width of energy barrier is important, 
but height is not
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Time Evolution

� If purely adiabatic and sufficiently slow, system remains in 
ground state as it moves from initial, “generic” Hamiltonian to 
problem Hamiltonian

� D-Wave’s initial state

— Ground state (not degenerate): 
|+>|+>|+>…|+>

— 1st excited state ( 1 )-way degenerate:
|->|+>|+>… |+>,|+>|->|+>… |+>, |+>|+>|->… |+>,…, |+>|+>|+>… |->

— 2nd excited state ( 2 )-way degenerate: :
|->|->|+>… |+>,|->|+>|->… |+>, |+>|->|->… |+>,…, |+>|+>|+>… |->

— etc.

N

N
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A Brief Aside

� What we just saw is adiabatic quantum optimization
— Optimization problem is to find the σi

z ∈{-1,+1} that minimize H0

� A more powerful variation is adiabatic quantum computing

— “[A]diabatic quantum computation (error free) is equivalent to 
the quantum circuit model (error free). So adiabatic quantum 
computers (error free) are quantum computers (error free) in 
the most traditional sense.” — Dave Bacon, 27Feb2007

� Let’s consider only adiabatic quantum optimization for now
— That’s all that’s been built to date at large scale
— Gate model follows later � smaller scale
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Annealing Time

� From a few slides back:
Let’s gradually decrease amplitude of transverse field, Γ(t), from a 
very large value to 0 � should drive system into ground state of H0

� What does “gradually” mean? � (Explanation from Farhi & Gutmann)
— H(t) encodes our problem
— Want to evolve system according to Schrödinger, i dt |ψ>=H(t) |ψ>
— Given that H(t) has one eigenvalue E≠0 and rest 0, find 

eigenvector |w> with eigenvector E
— Assume we’re given an orthonormal basis {|a>} with a=1,…,N and 

that |w> is one of those N basis vectors
— Let |s>=√N ΣN

a=1 |a>
— We consider Hamiltonian H=E|w><w|+E|s><s| (i.e., problem+driver)
— Let x= <s|w>
— Then, omitting a lot of math, we wind up with the probability at 

time t of finding the state |w> being Pr(t)=sin2(Ext)+x2cos2(Ext)
— To find state |w> with (near) certainty

we need to run for time tm=2Ext

d

1

π
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Determining the Annealing Time

� Unfortunately, we don’t generally
know how long we need to run 
(i.e., we can’t quickly compute tm)

� Function of minimum gap b/w
two smallest eigenvalues at any point
during the Hamiltonian’s time evolution

� Gap can get quite small

� Grover’s search (right)
— Find an n-bit number such that

|z> if z ≠ w
0   if z = w

for some black-box Hamiltonian Hp

— Here, gmin � 21-½ for n bits
— Implication: Solution time is O(2n)—

no better than classical brute force

Hp |z> = {
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Annealing Time: Discussion

The bad

� Very difficult to analyze an algorithm’s computational complexity
— Need to know the gap between the ground state and first 

excited state, which can be costly to compute
— In contrast, circuit-model algorithms tend to be more 

straightforward to analyze

� Unknown if quantum annealing can outperform classical
— If gap always shrinks exponentially then no
— (Known that in adiabatic quantum computing the gap shrinks 

polynomially)
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Annealing Time: Discussion (cont.)

The good

� Constants do matter
— If the gap is such that a correct answer is expected only 

once every million anneals, and an anneal takes 5µs, that’s still 
only 5s to get a correct answer—may be good enough

— On current systems, the gap scaling may be less of a problem 
than the number of available qubits

� We may be able to (classically) patch the output to get to the 
ground state
— Hill climbing or other such approaches may help get quickly 

from a near-groundstate solution into the ground state

� We may not even need the exact ground state

� For many optimization problems, “good and fast” may be 
preferable to “perfect but slow”
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Outline

� Performance potential of quantum computing

� Quantum annealing

� Case study: D-Wave quantum annealers

� How to program a quantum annealer

� Example: Map coloring
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D-Wave’s Hamiltonian

� Problem Hamiltonian (longitudinal field):

— programmer specifies  Ji,j and hi, system solves for σi
z

— σi
z ∈{-1,+1}

— Nominally, Ji,j∈���and hi∈�� but hardware limits to a small set 
of distinguishable values in ranges Ji,j�[-1,+1] and hi�[-2,+2]

� Application of the time-dependent transverse field:

— Programmer specifies total annealing time,T � [5,2000] µs
— s=t/T (i.e., time normalized to [0, 1])
— ε(s) and ∆(s) are scaling parameters (not previously user-

controllable but most recent hardware provides a modicum of 
control over the shape)
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D-Wave’s Annealing Schedule



16CSC 591-050/ECE 592-050

Building Block: The Unit Cell

� Logical topology
— 8 qubits arranged in a bipartite graph

� Physical implementation
— Based on rf-SQUIDs
— Flux qubits are long loops of superconducting 

wire interrupted by a set of Josephson 
junctions (weak links in superconductivity)

— “Supercurrent” of Cooper pairs of electrons, 
condensed to a superconducting condensate, 
flows through the wires

— Large ensemble of pairs behaves as a single 
quantum state w/ net positive/negative flux

— …or a superposition of the two (w/ tunneling)
— Entanglement introduced at qubit 

intersections

Logical view

or
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A Complete Chip

Logical view

� “Chimera graph”: 16×16 unit-cell grid

� Qubits 0–3 couple to north/south 
neighbors; 4–7 to east/west

� Incomplete/defects(not in 2k machine)

Physical view

� Chip is about the size of a 
small fingernail

� Can even make out unit 
cells with the naked eye
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Cooling

� Chip must be kept extremely cold for 
macroscopic circuit to behave like a two-level 
(qubit) system
— Much below superconducting transition 

temperature (9000 mK for niobium)

� Dilution refrigerator

� Nominally runs at 15 mK

� LANL’s D-Wave 2X runs at 10.45 mK
— That’s 0.01oC above absolute zero
— For comparison, interstellar space is far 

warmer: 2700 mK
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What You Actually See

� A big, black box
— 10’×10’×12’ (3m×3m×3.7m)
— Mostly empty space
— Radiation shielding, dilution refrigerator, chip + enclosure, 

cabling, tubing
— LANL also had to add a concrete slab underneath to reduce 

vibration

� Support logic
— Nondescript classical computers
— Send/receive network requests,

communicate with the chip, …
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Deviation from the Theoretical Model

� No all-to-all connectivity
— Each qubit can be directly coupled to at most 6 other qubits
— Qubits/couplers are absent (irregular, installation-specific)

� Not running at absolute zero

� Not running in a perfect vacuum

� No error correction

� We can therefore think of our Hamiltonian as being

where H?(s) encapsulates the interaction with the environment
— i.e., all things we don’t know and can’t practically measure
— Nonlinear and varies from run to run

� takes time to set up a problem and get results back
— Before: reset + programming + post-programming thermalization
— After: readout
— these dominate annealing time by many orders of magnitude
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Summary

� Is any quantum computer today faster than a modern classical 
computer?
— No, not for any real problem today
— Read fine print: Google’s 108X speedup for a D-Wave-friendly 

problem vs. non-optimal classical algorithm on single core

� Will quantum computers eventually outperform classical computers?
— Likely, but not guaranteed
— For adiabatic quantum optimization, more murky answers…

–Instead of O(2n)�O(nk), may see speedup by sign. linear factor

� Gate model hard to program � no std techniques
— how to represent data, write algorithms? � art of quantum pgm.

� Need methods, tools, collection of algorithms, appl. Areas
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Summary (cont.)

� Some opportunities may arise:
— Given NP-complete (or NP-hard) problem

� FT-quantum computer � “quantum supremacy” O(2n)�O(nk)

� For now: QC are expensive accelerators (other than GPU/FPGA)
— Any (linear, large factor) speedup is a big win
— But classical will improve speed as well, watch out!

method write algo run solution

Classical (brute force) Easy Slow exact

Classical (heuristic) Hard Fast Approximate

Quantum annealing Easy Fast Approximate

Approx. quantum gate Hard Maybe faster Approximate

Fault-tolerant quantum Tough! Much faster Exact


