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Agenda

• Errors -- where they come from, what they look like
• Replication-based codes
• Stabilizer codes and transversal operators
• Surface Codes



Errors

• Sources of errors
• Control errors -- gates that are incorrectly applied

• Usually based on faulty knowledge of the physical system characteristics
• Environmental errors
• Initialization, measurement, loss, leakage (into other energy states)

• What they look like
• Random qubit flip (X) and phase change (Z)
• Small errors (rotations) accumulate into observable flip/phase changes



3-qubit code: starting point...

• Three physical qubits = 1 logical qubit
• Corrects a single flip error

• Not a full quantum code, does not address phase error



Correcting a flip error

First ancilla checks whether first two qubits
are equal.

Second ancilla checks whether first and
third qubits are equal.

Result uniquely identifies the flip.
Apply X to error bit to correct.



Multi-qubit error?

Multi-qubit error is incorrectly identified as a single-qubit error,
and the wrong correction is applied.  (Creates a valid state, but
not the correct state.)



9-qubit Shor code

• Corrects a single flip (X) 
or phase (Z) error, or both

Flip correction = same circuit as before
on each group of three.



Correcting a phase error

First ancilla checks whether sign
of first three equals sign of 
second three.

Second ancilla checks sign of 
2nd and 3rd groups.

Syndome bits identify which 
group of three; correction applied 
to ANY qubit in the group.

https://goo.gl/BkhgWk

https://goo.gl/BkhgWk


Summary of 9-qubit Shor Code

• Correct a single flip error in any of the nine qubits
• Actually, can correct one qubit in all three groups,

but this is considered a single-qubit code because 
not all multi-flip errors can be corrected.

• Correct a single phase error in any of the nine qubits
• Correct with a Z on any qubit of the group

• If both X and Z error occurs, both will be corrected
• Even if on the same qubit
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Stabilizers & Transversal Gates



Two important concepts

• Stabilizer codes
• Systematic way to generate codes and correction circuits
• Code words based on +1 and -1 eigenstates for a particular set of 

operators known as stabilizers

• Transversal gates
• If an operator is transversal, then 

applying the operator (gate) to
an encoded state is a matter of 
applying the same (or equally simple) 
gate to each individual bit

• This means that computations can be 
just as efficient with encoded states



Stabilizers

• A state psi is stabilized by an operator K if it has eigenvalue +1:

• An N-qubit stabilizer state 〉|# $ is defined by the N generators of a
particular subset of the N-qubit Pauli operators (details in paper).
The state is stabilized by all operators in the subset.   



Stabilizer Codes

• Reduce N-qubit Hilbert space by requiring all codewords to be 
stabilized by a set of operators.
• Effectively, (N-1) operators reduces N qubits to a 1-qubit logical space.
• Example, given a 2-qubit space, require that each state be stabilized by XX.

Only two orthogonal basis states satisfy this requirement:

• For QEC, stabilizer codes are design to support detection and 
correction.  



7-qubit Steane Code

Stabilizers

Known as a [[7,1,3]] code
7 physical qubits
1 logical qubit
distance 3 between states
corrects (3-1)/2 = 1 error

Because all stabilizers are based
on X or Z, but not both,
transversal for Clifford gates
(X, Y, Z, S, CNOT)



State Preparation

Project arbitrary state into eigenstate of Hermitian U

After measurement...

or

+1 eigenstate -1 eigenstate

Z gate transforms -1 states to +1 states
No need to project to operators 4, 5, 6 because
0 is already an eigenstate



Error Correction



Universal Gates

• Steane code is transversal for Cliffort (X, Y, Z, S, CNOT), but
universal QC also requires T gate
• Performing T (or Toffoli) is possible, but requires multiple

single-qubit and two-qubit operators
• 2-qubit operators can propagate errors,

from single-qubit (correctable) to multi-qubit

• Can perform by "magic state" preparation



Fault Tolerance

• More complicated than it appears...
• Error correction circuits are also subject to errors

• Preparation of ancilla, magic states
• Application of gates, measurement
• "Distillation" of pure/low-error states

• More about this later
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Surface Code



Surface Code

• Based stabilizers and repeated measurements in both the
Z and X bases
• Qubits classified as "data" 

or "measurement"
• Requirements:

• All qubits must allow 
single-qubit rotations and
CNOT between nearest neighbors

• For Hadamard, must be able to
SWAP state with neighbors

• Measurement in the Z basis



Measurement Qubits

• "measure-Z" qubits (green)
"measure-X" qubits (yellow)

• measure-Z qubit forces its
neighbors (a, b, c, d) into an 
eigenvalue of ZaZbZcZd

• measure-X qubit forces its
neighbors (a, b, c, d) into an 
eigenvalue of XaXbXcXd



Stabilizers



Measurement Cycle



Error Detection

• Error causes changes in the measurement outcomes
• Does not try to correct (e.g. by applying X or Z)

• Those operations are error-prone

• In classical software, tracks the errors in a qubit and adjusts
subsequent measurement results (classically)
• Later errors can "undo" the adjustment



Error Detection



Logical Operations

Missing measurement qubits (e.g., on boundaries) 
introduce additional degrees of freedom.  Ex: Diagram has 
41 data qubits and only 40 stabilizers.

Can this array be viewed as a single logical qubit?

Applying X at ALL of the blue locations will alter the state of 
the array, but measurement results will remain the same.  
It has the affect applying a logical X to the logical qubit.

Likewise for Z operator applied along red line.

Large arrays are desired for low logical error rates.
(More on this later.)  How can we increase the number
of logical qubits within an array?



Logical Operations
Create "holes" (defects) to generate additional degrees of 
freedom.  Just "turn off" one or more measurement bits.

Figure shows a "single Z-cut" qubit.



Logical Operations
A double Z-cut logical qubit.

Removes the requirement to be close to an X 
boundary.

Making larger holes allows larger distance (d), or 
better error tolerance.



Logical Operations

• Not enough time... (or expertise!)

• Hadamard, S, T
• Moving logical qubits
• Braiding -- moving logical qubits in relation to each other

• Required for CNOT



How many physical qubits?

• Both stabilizer and surface codes need large numbers of physical 
qubits to reduce error rates to a desired logical error rate
• Multi-level codes

• Level-2 encoding as a collection of Level-1 logical qubits
• Increase levels until error rate is reached (e.g., 10-14 for a reasonable 

implementation of Shor's algorithm)

• Surface codes
• Increasing d (dimension of array) improves logical error rate

• On the order of thousands of physical qubits per logical qubit


