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Machine Learning:
Quantum SVM for
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ECE 592/CSC 591 – Fall 2018

Summary

• Applying quantum computation to Support Vector Machines
• Two approaches:

• Quantum Variational Classification
• Implement feature map as a quantum calculation, map value x to quantum state
• Then apply variational circuit to implement classifier

• Quantum Kernel Estimation
• Use kernel function (inner products) instead of full feature set
• Quantum estimation of kernel, which may be hard to compute classically

• Quantum advantage (potential):
• Complex feature maps/kernels for better classification of

high-dimensional data
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Intro to Support Vector Machines

http://web.mit.edu/6.034/wwwbob/svm.pdf

Supervised learning
Construct (n-1)-dimensional hyperplane
to separate n-dimensional data points

Support vectors help to determine
optimal hyperplane
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Support vectors are the
closest together, the hardest
to classify.

Maximization problem to 
find hyperplane with 
maximum distance (d).

Note the inner product.
Important later
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This transformation is
known as a feature map.
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Summary of SVM

• Support vectors: small set of training vectors that are closest together
• SVs determine the optimal hyperplane for binary classification
• Non-linear SVM:

• Feature map = mapping to higher-dimension space, which can be linearly 
separated

• Kernel = function that yields inner products of vectors in the feature space,
without having to directly calculate the feature map transformation
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Quantum SVM

• Two approaches:
• Quantum Variational Classification

• Implement feature map as a quantum calculation, map value x to quantum state
• Then apply variational circuit to implement classifier

• Quantum Kernel Estimation
• Use kernel function (inner products) instead of full feature set
• Quantum estimation of kernel, which may be hard to compute classically

Quantum Variational Classifier

(1) Encode data vector 𝑥 into quantum state 𝛷ሺ𝑥ሻ, which represents the feature map.
(2) Apply variational transform that defines the separating hyperplane.
(3) Measure the qubits to get a binary result.
(4) Multiple shots to get estimated value = classification.
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Encoding the feature map

Create entangling feature map, hard to estimate kernel function classically.
Uses only single- and two-qubit gates.

Classifier circuit

During training, values of  are found which minimize misclassification.
During classification,  are fixed.
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Binary Classification

Empirical Results

Circles are training data.
Squares are classifications.
Green circles are
support vectors.

Depth of variational circuit (W).
Black dots are classification accuracies, red dot is avg.
Blue lines are accuracies of QKE (next slides).
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Quantum Kernel Estimation

• Kernel is measure of similarities between vectors (inner products).
• Quantum estimator is transition probability between states.
• Measure, and count the number of all-zero outputs.

The frequency of this output is estimate of transition probability.

Kernel Estimate Accuracy
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Summary

• Applying quantum computation to Support Vector Machines
• Two approaches:

• Quantum Variational Classification
• Implement feature map as a quantum calculation, map value x to quantum state
• Then apply variational circuit to implement classifier

• Quantum Kernel Estimation
• Use kernel function (inner products) instead of full feature set
• Quantum estimation of kernel, which may be hard to compute classically

• Quantum advantage (potential):
• Complex feature maps/kernels for better classification of

high-dimensional data

@NCStateECE

Quantum Risk Analysis

ECE 592/CSC 591 – Fall 2018
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Summary

• Given: Loss/profit probability distribution of portfolio
• Estimate various quantities:

• Expected value, Value at risk, Conditional value at risk

• Classical Approach = Monte Carlo simulation
• With M samples, error scales as 1/ 𝑀

• Quantum Approach = Amplitude Estimation
• Error scales as 1/𝑀
• Quadratic speedup

Amplitude Estimation

• Suppose we have a transform A, such that:
𝐴|𝜓〉 ାଵ ൌ 1 െ 𝑎|𝜓〉|0〉  𝑎|𝜓ଵ〉|1〉

• Amplitude estimation provides an estimate of 𝑎, 
e.g., the probability of measuring a 1 in the last bit.

• Brassard, Hoyer, Mosca, and Tapp (2000).
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Amplitude Estimation

Requires 𝑚 additional qubits, and 𝑀 ൌ 2 applications of Q, which is related to A (next slide), 
and inverse QFT.  Measured output is 𝑦 and estimator 𝑎 ൌ sinଶሺ𝑦 𝜋 𝑀⁄ ൯.

What is Q?

2 applications of Q
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Expected value

One of the N values of a random variable X.
Represents discretized interest rate, or value of a portfolio.

Applied to state above...

Amplitude estimation = = 

𝑓 𝑖 ൌ ሺ


ேିଵ
) yields 𝐸ሾ



ேିଵ
] and thus 𝐸 𝑋 .

𝑓 𝑖 ൌ ሺ
మ

ሺேିଵሻమ) yields 𝐸ሾ𝑋ଶ]

Var(X) = 𝐸 𝑋ଶ െ 𝐸ሾ𝑋ሿଶ

Constructions

• State representing distribution
• In general, requires 2 gates.  

But approximations are polynomial in n for many distributions.

• Transforms for functions
• General construction of 

for k-order polynomical p(x) using 𝑂ሺ𝑛ାଵሻ gates and 𝑂ሺ𝑛ሻ ancillas
• Paper describes finding polynomials to enable f(x) shown on previous slide.
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Constructions

T-Bill Model, Binomial Tree

• Value of T-Bill today, given that rate may change in next time period.

• Only need one qubit to represent uncertainty.
• 𝐴 ൌ 𝑅௬ ሺ𝜃ሻ where 𝜃 ൌ 2/sin ሺ 𝑝ሻ
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Quantum Circuit and Results

Error vs. Monte Carlo
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Two-Asset Portfolio

Using 3 qubits for shift (S) and
2 qubits for twist (T) components of risk.

Results



11/1/2018

17

Summary

• Given: Loss/profit probability distribution of portfolio
• Estimate various quantities:

• Expected value, Value at risk, Conditional value at risk

• Classical Approach = Monte Carlo simulation
• With M samples, error scales as 1/ 𝑀

• Quantum Approach = Amplitude Estimation
• Error scales as 1/𝑀
• Quadratic speedup


