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* Applying quantum computation to Support Vector Machines

* Two approaches:
* Quantum Variational Classification
* Implement feature map as a quantum calculation, map value x to quantum state
* Then apply variational circuit to implement classifier
* Quantum Kernel Estimation
» Use kernel function (inner products) instead of full feature set
* Quantum estimation of kernel, which may be hard to compute classically

* Quantum advantage (potential):
* Complex feature maps/kernels for better classification of
high-dimensional data




Intro to Support Vector Machines

machines (SVMs)

R. Berwick, Village Idiot

http://web.mit.edu/6.034/wwwbob/svm.pdf

Supervised learning
Construct (n-1)-dimensional hyperplane
to separate n-dimensional data points

Support vectors help to determine
optimal hyperplane

An Idiot’s guide to Support vector

2-D Case

Find a.b,c, such that

ax + by = ¢ for red points
ax + by < (or <) ¢ for green
points.

Support Vector Machine (SVM)

r . ; I vect
» SVMs maximize the margin SUppart vectots
(Winston terminology: the “street’) Y

around the separating hyperplane.

* The decision function is fully '..
specified by a (usually very small)
subset of training samples, the \2\\
support vectors, /
» This becomes a Quadratic Maximize
margin

programming problem that is easy
to solve by standard methods

Which Hyperplane to pick?

Lots of possible solutions for a,b,c.

Some methods find a separating
hyperplane, but not the optimal one (e.g.,
neural net)
But: Which points should influence
optimality?
— All points?
+ Linear regression .

« Neural nets . *

— Or only “difficult points™ close to .
decision boundary

+ Support vector machines /
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Support Vectors: Input vectors that just touch the boundary of the
margin (street) — circled below, there are 3 of them (or, rather, the
‘tips’ of the vectors

T - T
wo'x+by=1 or wyx+b

Support vectors are the
closest together, the hardest
to classify.

Maximization problem to
find hyperplane with
maximum distance (d).

Primal problem:
!

min L, = H|wf - Sy, (x, . w+5)+ Ta,
=1

/ !
“':za.yfxw Zar‘y:zo
i=1

i=]
Dual problem: Important later

! l I
max L, (a )=Za ——=D)aayy.
1 T 2 I= J= 3= 1 J
i=l

i=1

!
s.t. Zajy, =0&a 20
i=]

(note that we have removed the dependence on w and b)

Note the inner product.
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Now knowing the a; we can find the
weights w for the maximal margin
separating hyperplane:

/
“"=za VX
i i

i=1

And now, after training and finding the w by this method,
given an unknown point # measured on features x; we
can classify it by looking at the sign of:

!
f(x)=weu+b= (Z(l,_\',xlou) +b
i=1
Remember: most of the weights w;, i.e., the a s, will be zero
Only the support vectors (on the gutters or margin) will have nonzero
weights or a s — this reduces the dimensionality of the solution

Not Linearly Separable! . .
ot Linearly separdble Transformation to separate

Find a line that penalizes
points on “the wrong side”

This transformation is
known as a feature map.




Problems with linear SVM

e e ®
L] ..
°
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What if the decision function is not linear? What transform would separate these?

K(xy)=(x-y+1)
Cv)— -/ 1
K(xy)=expf i/ ]
K (x.y)=tanh(xx-y—-4)
1*"1s polynomial (includes x*x as special case)

21 is radial basis function (gaussians)
3t is sigmoid (neural net activation function)

Remember the fu

I'he Kernel trick

Ans: polar coordinates!
Non-linear SVM

Imagine a function ¢ that maps the data into another space:

o=Radial-H

ee| o Radial
o. 0
® o
° 0 =-1

LY ° 0 =+1

® o |o

ction we want to optimize: L, = Xa, — 2X.a,ay,y, (x,*) where (x2x) is the
dot product of the two feature vectors. If we now transform to ¢, instead of computing this

dot product (x,=v,) we will have to compute (¢ (x))* ¢ (x,)). But how can we do this? This is
expensive and time consuming (suppose @ 1s a quartic polynomial... or worse, we don’t know the
function explicitly. Well, here is the neat thing

If there is a "kernel function™ K such that K(x,x) = ¢ (x,)* ¢ (x,), then we do not need to know

or compute ¢ at all!! That is, the kernel function defines inner products in the transformed space.
Or, it defines similarity in the transformed space.
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* Support vectors: small set of training vectors that are closest together
» SVs determine the optimal hyperplane for binary classification

* Non-linear SVM:

* Feature map = mapping to higher-dimension space, which can be linearly

separated

* Kernel = function that yields inner products of vectors in the feature space,
without having to directly calculate the feature map transformation
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* Two approaches:
* Quantum Variational Classification
* Implement feature map as a quantum calculation, map value x to quantum state
* Then apply variational circuit to implement classifier
* Quantum Kernel Estimation
* Use kernel function (inner products) instead of full feature set
* Quantum estimation of kernel, which may be hard to compute classically

Quantum Variational Classifier

10) — z1 )
0) — 2
0) = ) 2
0) — 2 W) HAE=z ) flz)ec
|0> — Zn—1
0) — A= )
(1) Encode data vector x into quantum state @(x), which represents the feature map.
(2) Apply variational transform that defines the separating hyperplane.
(3) Measure the qubits to get a binary result.
(4) Multiple shots to get estimated value = classification.
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Encoding the feature map

27

bt
TIT

0

Create entangling feature map, hard to estimate kernel function classically.
Uses only single- and two-qubit gates.

i ST v v it N B

ISR .
CMERHEE 4 b L b
b, : v 03.: ;Iﬂ?l_-'-H_: = 'li'(()—) - L = — S -
S L EhHes 4 F s
b ; 4 ; - - — = —

During training, values of 6 are found which minimize misclassification.
During classification, 6 are fixed.
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Binary Classification

0) — =21 )

0 — = A= 22

10) — :l;s«’ W) HAE=2 ) fl)ec
0) — =

10) — —A=

Construct empirical distribution p,(5) =r,R™".
Set label = argmax, {p,(5)}

Empirical Results

. _ Circles are training data.
100 150 200 Squares are classifications
5 Trial step Green circles are
. dhE sy aee e o e support vectors.
z ol e St ————| | 2
g 09 < :
2 08 el
[ . 5
g 07 82
= 2 1 1
? 06 0
0 0.2 0.4 0.6 08 1
0.5

2 3 4
Depth

Depth of variational circuit (W).
Black dots are classification accuracies, red dot is avg.
Blue lines are accuracies of QKE (next slides).
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Quantum Kernel Estimation

* Kernel is measure of similarities between vectors (inner products).
* Quantum estimator is transition probability between states.

* Measure, and count the number of all-zero outputs.
The frequency of this output is estimate of transition probability.

o) - = THA
o-mH _ HmMH _H - HIH - HiH=R-
o+ = HiH = H. 5 HiH. 5 HiH==
o —H = HIH = H = HIH = HIHA=
o) [} - THA

Kernel Estimate Accuracy

B del-

< I| I ||
01||II|. ||| I .I|I| |_.I| | I...nlll.
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* Applying quantum computation to Support Vector Machines

* Two approaches:

* Quantum Variational Classification
* Implement feature map as a quantum calculation, map value x to quantum state
* Then apply variational circuit to implement classifier
* Quantum Kernel Estimation
» Use kernel function (inner products) instead of full feature set
* Quantum estimation of kernel, which may be hard to compute classically

* Quantum advantage (potential):

* Complex feature maps/kernels for better classification of
high-dimensional data
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ECE 592/CSC 591 - Fall 2018

NC STATE Electrical &
UNIVERSITY  Computer Engineering @NCStateECE

10



11/1/2018

Quantum Risk Analysis
Stefan Woerner' * and Daniel J. Egger!
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(Dated: June 20, 2018)

* Given: Loss/profit probability distribution of portfolio

* Estimate various quantities:
* Expected value, Value at risk, Conditional value at risk

* Classical Approach = Monte Carlo simulation
* With M samples, error scales as 1/\/M
* Quantum Approach = Amplitude Estimation

* Error scales as 1/M
* Quadratic speedup

Amplitude Estimation

* Suppose we have a transform A, such that:

Al¢)(n+1) =v1- Cllll)o)nl()) + ﬁllpl)nll)

* Amplitude estimation provides an estimate of a,
e.g., the probability of measuring a 1 in the last bit.

* Brassard, Hoyer, Mosca, and Tapp (2000).
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Amplitude Estimation

(m—1)10) {H]

(4) 10) {H]

0) [0) {H]

Fi

m

|0),, 1

]

AlQY | ... | @2

0)

m—1

Q'_’

Requires m additional qubits, and M = 2™ applications of Q, which is related to A (next slide),
and inverse QFT. Measured output is y and estimator @ = sin? (y n/M).

Appendix A: Q-Operator

defined as [§|
Q = A(I-20),., 0], )Al
(H — 2 |l,'()>” |“) <l.'“‘” (”|)

seen that Q = R, (26).

For a given circuit A acting on n + 1 qubits, the cor-
responding Q-operator used in amplitude estimation is

where T denotes the identity operator. If n = 0, as
e.g. considered in Sec. IV, the reflections defining Q
reduce to the Pauli Z-operators and @ simplifies to
AZA'Z. In addition, if A = R,(6) then it can be easily

(m—1) |0)

(7) 10)

(0) [0) {H] I

0),

|0y

1]

i

1
Fon

4

Q¥

Q%

Q™

2/ applications of Q
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Expected value

1Y),

N-1 One of the N values of a random variable X.

_ § \/p_ |z> — Represents discretized interest rate, or value of a portfolio.
- t n

=0

F 2 i), 0) = [i),, (VI=F@ 10) + VI 1))

l Applied to state above...

oy Nien Q) = (NL_I) yields E[~2-] and thus E[X].
> VI=F@OVPili), 10) + ) VG VP li), 1) ,
i=0 =0 (D) = (=) vields E[X?]
N l Var(X) = E[X?] — E[X]?
Amplitude estimation = Z;\:Bl pif(i) = E [f(X)]

- State representing distribution  [¢),, = »_ /i li),
* In general, requires 2™ gates. =0
But approximations are polynomial in n for many distributions.
* Transforms for functions
* General construction of
P : |z).10) — |z), (cos(p(z))|0) + sin(p(x)) |1))
for k-order polynomical p(x) using 0(n**1) gates and 0(n) ancillas
* Paper describes finding polynomials to enable f(x) shown on previous slide.
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1)
190)
10) —{ Ry (c) H Ry (4a +b) | R, (4a) | Ry (a + b) |—
FIG. 2 Quantum  circuit realizing |z}, [0) —

z),, (cos(p(x)/2) |0)+sin(p(x)/2) |1)) for p(z) = (az” +bx+c)
and z € {0,1,2,3}. Exploiting x = (2¢1 + qo) and g’ = ¢
leads to p(z) = (4a + b)q1 + 4aqoq1 + (a + b)qo + ¢, which can
be directly mapped to a circuit. R, denotes a Y-rotation.

T-Bill Model, Binomial Tree

* Value of T-Bill today, given that rate may change in next time period.

, (1=-pVrp pVr : ; i
V= - = (1 = p)Viow + PVhich
]+‘,.+(\)r.+ 1+ ( 1") low T PVhigl

* Only need one qubit to represent uncertainty.
* A =R, (6,) where 8, = 2/sin(y/p)
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Quantum Circuit and Results

Q operators

0.4 1
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Error vs. Monte Carlo
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4 Quantum Algorithm
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Two-Asset Portfolio

Using 3 qubits for shift (S) and
2 qubits for twist (T) components of risk.

Probability distribution

Shift . Twist
(e) qga:|0] r{uur_.\: .. (d) qq:|0] { Ry (84) .
q: |0 R, (0) —&— qa: |0 { H.,m,\: &
q: |0 { Ry (o) | &

FIG. 8 (a) 8-bin histogram of historical shift data (bars) as
well as fitted distribution (dashed line). (b) 4-bin histogram
of historical twist data (bars) as well as fitted distribution
(l]il.\‘}ll‘ll ]illv). In both cases the labels show the quantum state
that will occur with the corresponding probability. (c¢) and
(d) show the quantum circuits used to load the distributions
of (a) and (b), respectively, into the quantum computer.
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l“" T LI T T T
. 4m=0
m=1 *m =3 — exact
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v
— 6km=2 = ' m | p
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= 40k 4
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Estimated value a

FIG. 9: VaR estimated through a simulation of a perfect
quantum computer. As the number of sample qubits m is
increased the quantum estimated VaR approaches the classi-
cal value indicated by the vertical blue line. The dashed lines
are intended as guides to the eye. The stars indicate the most
probable values.

i ( '_\‘
m M #qubits all-to-all IBM Q 20 overhead
1 2 13 795 1'817 2.29
2 4 14 2'225 5'542 2.49
3 8 15 5085 12'691 2.50
4 16 16 10803 2.45
b 32 17 22235 2.50
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Quantum Risk Analysis
Stefan Woerner' * and Daniel J. Egger!

"IBM Research — Zurich
(Dated: June 20, 2018)

* Given: Loss/profit probability distribution of portfolio

* Estimate various quantities:
* Expected value, Value at risk, Conditional value at risk

* Classical Approach = Monte Carlo simulation
* With M samples, error scales as 1/\/M
* Quantum Approach = Amplitude Estimation

* Error scales as 1/M
* Quadratic speedup

17



