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Introduction/Motivation

Multistage compilation of QAlgos:

> High level description of program —> Net lists of circuits = Pulse sequences = Physical Quantum
Computer

Key: Implement classical subroutines (oracles):
o Why?
o Underlying problem often involves classical data:
o factoring (Shor’s),
o HHL - for solving linear equations,

o quantum walks

° quantum simulation, etc.

> How best to implement on quantum computer?



Reversible Computing

How best to implement classical subroutines (oracles) on a quantum computer

Deals with:
° Minimize gate count for a given universal gate set

o Minimize resources such as:
o Circuit depth

o Number of qubits required, etc.

Compilingirreversible programs to QC:
o Hide classical subroutines in libraries — optimized collection of functions

> Tools to convert classical code = network of Toffoli gates (Quipper)

LIQU |> provides REVS— tool to automatically convert Classical code = reversible networks



ldea behind REVS

Bennet’s method (1973)
o Reverse each time step

o Perform forward computation using step-wise
reversible processes

o Copy out the result 0

> Undo all steps in the forward computation in
reverse order

Solves reversible embedding problem . .

o Cost — large memory footprint as each intermediate
results has to be stored

> Solution - Bennet’s new and improved method!! 0
(1989) 0

> Pebble games

0
result

o Space vs Time tradeoff




Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”
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Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
1 2 3 4
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Depth

Pebble game: 1D plus space constraints
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REVS

Determining best strategy is program dependentand non-trivial

REVS:
> Boolean functions synthesized using heuristics and optimizations (ESOP)

o Circuits made reversible using:

° Bennet’s method(s)
o Uncompute data thatis no longer needed (from data dependencies)

For example — SHA256
° No branching, uses simple boolean functions such as XOR, AND and bit rotations

o However, it has internal state between rounds
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(c) Final resulting Toffoli network implementing the function h.



SHA-256

Ideal candidate:

Table 1. Comparison of different compilation strategies for the cryptographic hash

o Stores state between rounds function SHA-256.
o S|mp|e bina ry functions Rnd  Bennett Eager Reference
Bits  Gates | Time Bits | Gates | Time | Bits Gates
1 | 704 1124 0.254 353 690 0.329 353 683
2 | 832 2248 0.263 353 1380 0.336 353 | 1366
4x improvementin number of qubits required 3 | 960 3372/0.282 353 2070 0.342|353 2049
4 1088 4496 0.282 353 2760 0.354 353 2732
5 1216 5620 0.290 353 3450 0.366 353 3415
6 1344 6744 |0.304 353 4140 0.378 353 4098
Can also be applied to other hash functions 7 |1472| 7868 0.312 353 4830 0.391|353 | 4781
> SHA-3 and MD5 8 1600 8992 0.328 353 5520 0.402 353 | 5464
9 1728 10116 0.334 353 6210 0.413 353 6147
REVS allows exploration of trade-off space 10 | 1856 11240 0.344 353 6900 0.430 353 6830




Using Dirty Ancillas

What are dirty ancillas?
o Qubits in unknown state

o Might be entangled in unknown way
o Available as scratch space

How can dirty ancillas be useful? Two scenarios currently known:
o Multiply controlled NOT operation

o Constant incrementer |x> =2 |x + c>

Increment |x> by 1 example usingunknown |g>:

o g’ is 2’s complement of g=>g’ — 1 = not(g)

cg+g' =0

o Ix>|g> 2 [x—g>|g> 2 |x—-g>|lg’ —1>2 |x—-g-g +1>|g' -1> 2 |[x+ 1>|g>



Repeat-Until-Success Circuits

Key idea: Use non-deterministiccircuits (RUS circuits) for decomposition (Paetznick & Svore,
2014)

o Substantial reduction in T gates

o Shorter expected circuit length compared to purely unitary design
o Approximating to desired precision £

Has been shown to efficiently synthesize any 1-qubitunitary

Number of repetitions are provablyfinite
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Fig. 3. Repeat-Until-Success (RUS) protocol to implement a unitary V.



Conclusion

REVS:
> Translate classical, irreversible programs = reversible circuits

° Not required to think in circuit centric manner
o Capture data dependencies/mutations using MDDs

o Heuristics to find optimal pebbling strategies

Reuse of qubits even if state is unknown/entangled
° Reduce circuit sizes

Implement unitaries probabilistically using protocols such as RUS
o Constant factor improvement in circuit size



Discussion

Reuse of dirty ancillas only possible for very specific situations

RUS protocol veryinteresting:
o Can we implement multi-qubit unitaries using RUS?

The paperdoesn’t discuss heuristics used for finding optimal pebbling strategy
° What heuristics are used?

o Can we improve on it?



