Tools For Quantum and
Reversible Circuit
Compilation

- MARTIN ROETTELER
- PRESENTED BY HARSH KHETAWAT
- 11/19/2018

Introduction/Motivation

Multistage compilation of QAlgos:

> High level description of program —> Net lists of circuits = Pulse sequences = Physical Quantum
Computer

Key: Implement classical subroutines (oracles):
o Why?
o Underlying problem often involves classical data:
o factoring (Shor’s),
o HHL - for solving linear equations,

o quantum walks

° quantum simulation, etc.

> How best to implement on quantum computer?

Reversible Computing

How best to implement classical subroutines (oracles) on a quantum computer

Deals with:
° Minimize gate count for a given universal gate set

o Minimize resources such as:
o Circuit depth

o Number of qubits required, etc.

Compilingirreversible programs to QC:
o Hide classical subroutines in libraries — optimized collection of functions

> Tools to convert classical code = network of Toffoli gates (Quipper)

LIQU |> provides REVS— tool to automatically convert Classical code = reversible networks

ldea behind REVS

Bennet’s method (1973)
o Reverse each time step

o Perform forward computation using step-wise
reversible processes

o Copy out the result 0

> Undo all steps in the forward computation in
reverse order

Solves reversible embedding problem . .

o Cost — large memory footprint as each intermediate
results has to be stored

> Solution - Bennet’s new and improved method!! 0
(1989) 0

> Pebble games

0
result

o Space vs Time tradeoff

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

L

6/9/2016 M. Roetteler @ MSR / QuArC

i

Example: 11

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

=]

6/9/2016 M. Roetteler @ MSR / QuArC

i
Example: 11
2 2

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

[[e][=][]

6/9/2016 M. Roetteler @ MSR / QuArC

#
1
Example:
2
3

WnN =

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

[{e][=][]

6/9/2016 M. Roetteler @ MSR / QuArC

Example:

P WN R

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

[[e] L]

6/9/2016 M. Roetteler @ MSR / QuArC

Example:

b WNRFP
W s WN =

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

NO00E

6/9/2016 M. Roetteler @ MSR / QuArC

Example:

N WS WN -

Pebble game: case of 1D graph

Rules of the game: [Bennett, SIAM J. Comp., 1989]

* n boxes, labeledi=1, ..., n

* in each move, either add or remove a pebble

* a pebble can be added or removed in i=1 at any time

* a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
* 1D nature arises from decomposing a computation into “stages”

HiEIND

6/9/2016 M. Roetteler @ MSR / QuArC

Example:

N O uUDWNER 4
P NWAWNPR

w
~

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

i
1 1
2 2

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

Pebble game: 1D plus space constraints

Imposing resource constraints:

* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

WN"‘:H:
WIN =

Example: (n=3, S=3)
|) | |) | |) | | |
1 2 3 4

M. Roetteler @ MSR / QuArC

38

6/9/2016

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

-bU)NI—‘:n:
_, W N

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC

38

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
| | |) | |) | |) |
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

m-bWNI—‘:n:
AR OON =

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

mU'I-bU)NI—‘:n:
W A EE WN PR

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
|) | |) | | | |) |
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

\|mU1-bU)NI—‘:n:
= W AR WN =

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

ONO U P WNPRL
N, W DR EFEREWNPR

Pebble game: 1D plus space constraints

Imposing resource constraints:
* only a total of S pebbles are allowed
* corresponds to reversible algorithm with at most S ancilla qubits

Example: (n=3, S=3)
1 2 3 4

6/9/2016 M. Roetteler @ MSR / QuArC 38

OCooNOOULIEA, WNRFEP
R NP W PR WNPR

Depth

Pebble game: 1D plus space constraints

3000+

2500

2000+

1500 -

1000

500

Pebbles
— 250
100
— 50
— 10
8

Use dynamic programming
L to determine best strate
F e N ! gy

e ¥ for given n (steps) and S
‘55 h"b‘ —n (pebbles)
/ [Lange-McKenzie-Tapp 2000]

S~

6/9/2016

50

100 150 200 250

Width £ Works for 1-D chains
More complex for general
[Bennett 73] graphs

M. Roetteler @ MSR / QuArC 38

REVS

Determining best strategy is program dependentand non-trivial

REVS:
> Boolean functions synthesized using heuristics and optimizations (ESOP)

o Circuits made reversible using:

° Bennet’s method(s)
o Uncompute data thatis no longer needed (from data dependencies)

For example — SHA256
° No branching, uses simple boolean functions such as XOR, AND and bit rotations

o However, it has internal state between rounds

]
B
e
[
]

\ &)
[}
[}
o
[}
[}
-9

| '\ EVS AFK " — AKX D B PR S
fabe _ init fbed fabe init fbcd

Modeled using Mutable Data (fabe fabe 'bed
Dependency (MDD) graphs \{.b,] \,‘J]
> Tracks data flow during classing e/ i 2 -
computation l l
o ldentify which parts can be overwritten /
uncomputed (clean-up) (a) MDD for h before cleanup (b) MDD for h after eager cleanup
CIIean-up on QC = Garbage collection on (abe fab e
classiccomputers S T T o fbed fbed s
Outputs Toffoli network C; I 1] oc
o Imported in LIQU |> d : d
o Used as part of quantum communication Fas Fan - out
> Supports compilation for different target P f Pamera PR, f SPamera
architectures / abstract QC machine ~«O C } O (
models

(c) Final resulting Toffoli network implementing the function h.

SHA-256

Ideal candidate:

Table 1. Comparison of different compilation strategies for the cryptographic hash

o Stores state between rounds function SHA-256.
o S|mp|e bina ry functions Rnd Bennett Eager Reference
Bits Gates | Time Bits | Gates | Time | Bits Gates
1 | 704 1124 0.254 353 690 0.329 353 683
2 | 832 2248 0.263 353 1380 0.336 353 | 1366
4x improvementin number of qubits required 3 | 960 3372/0.282 353 2070 0.342|353 2049
4 1088 4496 0.282 353 2760 0.354 353 2732
5 1216 5620 0.290 353 3450 0.366 353 3415
6 1344 6744 |0.304 353 4140 0.378 353 4098
Can also be applied to other hash functions 7 |1472| 7868 0.312 353 4830 0.391|353 | 4781
> SHA-3 and MD5 8 1600 8992 0.328 353 5520 0.402 353 | 5464
9 1728 10116 0.334 353 6210 0.413 353 6147
REVS allows exploration of trade-off space 10 | 1856 11240 0.344 353 6900 0.430 353 6830

Using Dirty Ancillas

What are dirty ancillas?
o Qubits in unknown state

o Might be entangled in unknown way
o Available as scratch space

How can dirty ancillas be useful? Two scenarios currently known:
o Multiply controlled NOT operation

o Constant incrementer |x> =2 |x + c>

Increment |x> by 1 example usingunknown |g>:

o g’ is 2’s complement of g=>g’ — 1 = not(g)

cg+g' =0

o Ix>|g> 2 [x—g>|g> 2 |x—-g>|lg’ —1>2 |x—-g-g +1>|g' -1> 2 |[x+ 1>|g>

Repeat-Until-Success Circuits

Key idea: Use non-deterministiccircuits (RUS circuits) for decomposition (Paetznick & Svore,
2014)

o Substantial reduction in T gates

o Shorter expected circuit length compared to purely unitary design
o Approximating to desired precision £

Has been shown to efficiently synthesize any 1-qubitunitary

Number of repetitions are provablyfinite

O/ HA! o A
U | U |

o) A {Wi} - — V[Y)
o _ _ _ _ _ _ _

Fig. 3. Repeat-Until-Success (RUS) protocol to implement a unitary V.

Conclusion

REVS:
> Translate classical, irreversible programs = reversible circuits

° Not required to think in circuit centric manner
o Capture data dependencies/mutations using MDDs

o Heuristics to find optimal pebbling strategies

Reuse of qubits even if state is unknown/entangled
° Reduce circuit sizes

Implement unitaries probabilistically using protocols such as RUS
o Constant factor improvement in circuit size

Discussion

Reuse of dirty ancillas only possible for very specific situations

RUS protocol veryinteresting:
o Can we implement multi-qubit unitaries using RUS?

The paperdoesn’t discuss heuristics used for finding optimal pebbling strategy
° What heuristics are used?

o Can we improve on it?

