





DFT and FFT

DFT operates on a discrete complex-valued function a(x), and produces a new function A(x):

$$A(x) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a(k) e^{2\pi i \frac{kx}{N}}$$

FFT is an efficient implementation of DFT when N is a power of 2.

FFT

Let $\omega_{(n)}$ represent the *N*th root of unity, $\omega_{(n)} = e^{\frac{2\pi i}{N}}$.

FFT can be expressed as a matrix transformation

$$(F_N)_{jk} = \omega_{(n)}^{jk}$$

Example, for N = 4, F_4 is a 4×4 matrix:

$F_4 = \frac{1}{\sqrt{N}}$	$\omega_{(2)}^{0}$	$\omega_{(2)}^0$	$\omega_{(2)}^0$	$\omega^0_{(2)}$	$=\frac{1}{2}$	(1	1	1	1
	$\omega_{(2)}^0$	$\omega_{(2)}^1$	$\omega_{(2)}^2$	$\omega_{(2)}^3$		1	i	-1	-i
	$\omega_{(2)}^0$	$\omega_{(2)}^2$	$\omega_{(2)}^4$	$\omega_{(2)}^6$		1	-1	1	-1
	$\left(\omega^{0}_{(2)}\right)$	$\omega_{(2)}^3$	$\omega^6_{(2)}$	$\omega_{(2)}^9 ight)$		$\begin{pmatrix} 1 \end{pmatrix}$	-i	-1	i)

Implementation efficiency comes from recursive nature of FFT – more about this later.

QFT uses the same matrix

$$\sum_{x} a(x) \left| x \right\rangle \to \sum_{x} A(x) \left| x \right\rangle$$

Function is expressed as coefficient of n-qubit state No output register – change in state.

Same matrix, normalization makes it unitary

$$QFT_{4} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \begin{pmatrix} a(0) \\ a(1) \\ a(2) \\ a(3) \end{pmatrix} = \begin{pmatrix} A(0) \\ A(1) \\ A(2) \\ A(3) \end{pmatrix}$$

Effects of QFT

If a_x is periodic with period r, which is a power of 2, then A_x will be zero except when x is a multiple of $\frac{N}{r}$.

$$\sum_{x} a(x) \left| x \right\rangle \to \sum_{x} A(x) \left| x \right\rangle$$

When measured, resulting state will be a random multiple of $\frac{N}{r}$.

If period is not a power of 2, then states near multiples of $\frac{N}{r}$ will be measured with high probability.

With one qubit...

• One-qubit QFT = Hadamard gate.

$$\omega_{(1)} = e^{\frac{2\pi i}{2}} = -1$$

$$QFT_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Implementation

• To the "chalkboard..."

