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« Efficient quantum implementations of classical functions
* Create reversible classical circuits
* Convert to quantum
* Undo entanglement

* Quantum algorithms
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Classical (Boolean) Circuits

In general, classical circuits are not reversible. Consider this circuit for a 4-way AND.
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By using (classical) Toffoli gate, we can construct a reversible circuit. Requires one additional bit
per AND gate, and of course a Toffoli gate is more complex than an AND gate.

Reusing Temporary Bits

These bits are no longer zero, and can’t be reused if
mn e— T f———— M this feeds into additional computation. Can’t just

jap “reset” them, because that’s not reversible. Need to
: o - uncompute to reclaim them.
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Tradeoff: Uncomputing requires extra gates, so
when is it better to reclaim vs. retain for
potential later use? 0
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General Scheme

Assume a classical circuit C can be decomposed into subcircuits C;, convert each to reversible R;.

General Scheme

Using this general scheme, any classical circuit with t steps and s bits can be done reversibly in
0(t'*¢) steps and 0O(s log t) bits. There may be more efficient implementations for a specific circuit.

Uncomputing temporary qubits is more important in the quantum realm, because:

* Qubits are more precious than bits. Reducing storage is more important (for now) than reducing gates.
* Temporary bits may be entangled with output bits.
Measuring them to reset, for use in later computation, can disturb the output bits.
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« Any computation with an efficient ¥, = U — |
classical circuit has an equivalent V), — ] _— |y ®fx)>
efficient quantum circuit.

* Use reverse computation to unentangle and reuse tmp qubits.

Further reading:
« John Preskill notes, Chapter 6

« Vedral, Barenco, and Ekert, Quantum Networks for Elementary Arithmetic Operations, Physical Review A,
54(1):147-153, 1996.

* Barenco, et al., Elementary Gates for Quantum Computation, Physical Review A, 52(5):3457-3467, 1995.

Simple Quantum Algorithms

* Deutsch

* Phase Change for a Subset of Basis Vectors
* Deutsch-Josza

* Simon




Deutsch Algorithm

‘ Problem: Given a Boolean function f:Z, — Z,, determine whether f is constant.

(l0& f(x)) — 1 & f(z)))

:_Z|

=0

When f(2z) = 0, this becomes \/l— 0) — 1)) =|-).

When f(x) = 1, this becomes \/; (1) = 10)) = —|-).

o) |rc>—Uf—|w>
Apply Uy to the input state | +)| —). |0) |f(
—_" = [f(z))
If f(x) is constant, then output is | +)| —).
If not, output is | —)| —).
Apply Hadamard to first qubit and measure: 1 if constant, O if not.
(Details on next slides.)
Requires only a single call to black box Uy, while classical algorithm requires two calls.
|
p1+) =) = Us(5(10) + [1))(10) = [1)))
= —(!U> (lo& f(0)) — 1 f(0))) + 1) (0 f(1)) — 1 & f(1))))

9/17/2018



When f(x)
=) =)

constant.

Usl+)|-) = Z

%\

1s constant.

(—1

When f(x) is not constant, then (—1 )/#) negates exactly one of the terms, so the output is

Z f(»l )

Sl

)/) is a meaningless global phase, and the output is |[+) |—).

By applving a Hadamard gate and measuring the first bit, we get 0 if constant and 1 if not

0)

Uy

0)

Selective Phase Change

is in a subset X of {0,1, ..., N
the following transform:

Problem: Change the phase of terms in a superposition |Y) = Y a; |i), depending on whether i
— 1} or not. More specifically, find an efficient implementation of

sg: Z axlx) > ) aeln) + ) aylv)

XEX x&X

Requires an efficient implementation of Uy for the function f(x) that tests for membership in X:

) 1 feeX
flz) = .
0 otherwise
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First, apply Uy to |¢7) |0).

) =Up[0)10) = ) a. |, f(x)
= a; |z) |1) + ) a.|x)|0)
S 1

—

g X

Finally, uncompute using U; 'to remove
any entanglement with the output bit.

Now, apply the phase change gate u(¢) = (%) to the output qubit.

0 e'?

This has no effect on [0) and shifts the phase on [1).

(I®" @ u()) |7) = Z a, |z) e’ |1) + Z a, |z) |0)
zeX r¢g X
- Z aze'’ ) |1) + Z a, |x) [0)
r€X r¢ X
= ( Z a.6* |z) + Z s |_,.>) |f(z))
= (Sx |¥) |f())
[¥) — Sk 1)
Uy — | Uf" ‘
0) — u() — [0)
Special case of m:
0) —{w |¥x)
Uf \t\)—;Z(—l)ﬂ')h)
1) —H — 2= 1) NS
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Background: Hamming Distance

The Hamming distance dy(x,y) between two bit strings x and y is the number of bits
in which the two strings differ.

The Hamming weight dy(x) of a bit string x is the number of 1 bits.

For two bit strings x and y, the operator x - y gives the number of common 1 bits.

Some interesting notes:

on .
oy =dg(x N1 . i o
y=dg(xAy) S (1) =0 T (1) = { if y =0

=0 e 0 otherwise

More on Walsh-Hadamard

N-1

W |0) = % > |z

x=0

Wir)=(H®:--® H)(jrn-1) ® -+ - ®[ro))

[a—

(10) + (=)™ [)) ®--- @ (|0) + (=1)"[1))
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-
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Deutsch-Josza Algorithm

Problem: Given an n-bit Boolean function (mapping n bits to 1) that is known to be either
constant or balanced, determine whether it is balanced or constant. A function is “balanced” if
an equal number of input values return O and 1.

Apply phase shift of  to negate elements where f(x) = 1.
Apply Walsh-Hadamard to the result.

For constant f, the final output is |0) with probability 1.
For balanced f, the final output is non-zero with probability 1.

(Details on next slides.)

Requires only a single call to black box U, while classical algorithm requires at least 21 + 1 calls.

First, prepare a complete superposition, and then apply the phase shift algorithm to negate
the terms corresponding to vectors |r) where f(z) = 1.

L l N-1 AT
M—WZ(—I) i)

i=0
Next, apply the Walsh-Hadamard transform to obtain:

N-1 N-1

|0) = % X, ((—1)-"“’ > (=0 |./>)

i=0 j=0
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1 N-1

) = % Z ((— /0y " (—1)" IJ))

i=0 j=0

For constant f, the (—1)/%) = (—=1)/9 is simply a global phase, and the state |¢) is |0):

|f_‘1 = H“ \ Z(Z *"l}l ‘) >
_ (_1)‘ “”T Z(_I)E-ll |(])

= (-1 ).HU) |())

because >;(—1)"7 = 0 for j # 0.

For balanced f,

1 i j
9} =+ Z(Z(—l)“’ - Z(—l)"") ), where X, = {z|f(z) = 0}

7 i€ Xo i€ Xo

In this case, when j = 0, the amplitude is zero.
Therefore, measuring |¢) in the standard basis will return a non-zero j
with probability 1.
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Simon'’s Algorithm

‘ Problem: Given a 2-to-1 function f, such that f(x) = f(x®a), find the hidden string a. ‘

Create superposition |x)|f(x))
Measure the right part, which projects the left state into \/—15 (Jxo) + |x0 D a)).
Apply Walsh-Hadmard. (Details next slide.)

Measurement yields a random y such that y - a = 0 (mod 2).
Computation is repeated until n independent equations - about 2n times.
Solve for a in 0(n?) steps.

Requires 0(n) calls to U, followed by 0(n?) steps to solve for a.

Classical approach requires 0(2™?) calls to f.

|0) W . - 7%“_,.“) + |z @ a))
0) f(xo)
” 1 ( + 5 ) o l ] Z _1 _r“-_i[+ _l (xoBa)-y)
(—_) |zo) + |zo @ a))) _ﬁ o ((—1) (—1) ly)
1 .
- 3 (=1)%(1 + (~1)**) |y)
2 -
- N Z (—=1)%% |y)

y-a even
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Measurement yields random y such that y-a = 0 mod 2. so the unknown bits of a; of a
must satisfy this equation:

Yo QDB BYn1-ap1 =0

Computation is repeated until n linearly independent equations have been found. Each
time, the resulting equation has at least a 50% probability of being linearly independent
of the previous equations. After repeating 2n times, there is a 50% chance that n linearly
independent equations have been found. These equations can be solved to find a in O(n?)

steps.

* Any efficient reversible classical circuit can be
efficiently implemented as a quantum circuit.
* Use inverse function to reduce space and unentangle temporary bits.

* For quantum advantage, add some non-classical operations.
* E.g, phase change.

* Are these algorithms really useful?

* Perhaps not directly, but they illustrate ways in which quantum computing
may have an advantage over classical computing.
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