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Given a function f : {0, 1}n → {0, 1}, the goal is to find an x with f(x) = 1. Let Tb be the set of inputs

with f -value b, i.e. Tb = {x ∈ {0, 1}n : f(x) = b} for b ∈ {0, 1}. Let S be the state space of n qubits, and Sb

the subspace spanned by the orthonormal vectors in Tb, i.e.

Sb = span{|x⟩ : x ∈ Tb}, b ∈ {0, 1}.

Note that S0 = S⊥
1 , and each |y⟩ ∈ S has a unique decomposition |y⟩ = |y0⟩+ |y1⟩ with |yb⟩ ∈ Sb. Suppose

a quantum oracle Uf implements f as follows. For the basis vectors,

Uf |x⟩ =

−|x⟩, if x ∈ T1;

|x⟩, if x ∈ T0.

Thus the unitary operator Uf takes the following form,

Uf =
∑

x∈{0,1}n

(−1)f(x)|x⟩⟨x| = PS0 − PS1 ,

where PSb
=

∑
x∈Tb

|x⟩⟨x| is the projection onto the subspace Sb. Note that Uf is the reflection about the

subspace S0.

Let

|ψb⟩ =
1√
|Tb|

∑
x∈Tb

|xb⟩, b ∈ {0, 1}.

Note that |ψb⟩ ∈ Sb, and |ψ0⟩ and |ψ1⟩ form an orthonormal basis of a 2-dimensional subspace W of S. Let

|+n⟩ = 1√
N

∑
x∈{0,1}n

|x⟩ = H⊗n|0n⟩,

where N = 2n and H is the Hadamard gate. Note that

|+n⟩ =
√
N −M
N

|ψ0⟩+
√
M

N
|ψ1⟩ ∈W,

where M = |T1| is the number of valid solutions. Consider the unitary operator

V = 2|+n⟩⟨+n| − I = H⊗n(2|0n⟩⟨0n| − I)H⊗n.
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For any |y⟩ ∈ S linearly independent of |+n⟩,

V |y⟩ = 2|+n⟩⟨+n|y⟩ − |y⟩,

or
1

2
(V |y⟩+ |y⟩) = ⟨+n|y⟩|+n⟩,

so V is the reflection about the line spanned by |+n⟩ in the 2-dimensional plane spanned by |y⟩ and |+n⟩.
Note that W is invariant under Uf and V , i.e. UfW ⊂ W and VW ⊂ W . Indeed, for any vector

|y⟩ = α|ψ0⟩+ β|ψ1⟩ ∈W ,

Uf |y⟩ = α|ψ0⟩ − β|ψ1⟩ ∈W,

and

V |y⟩ = 2⟨+n|y⟩|+n⟩ − |y⟩ ∈W.

Thus we can restrict ourselves to W .
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Figure 1: Grover iteration

Let Gf = V Uf and let’s see what Gf does to a state |y⟩ ∈W (see Figure 1). Use polar coordinates in the

planeW and let ∠|y⟩ be the angle of |y⟩measured from |ψ0⟩. Recall Uf is the reflection about the subspace S0,

which, when restricted toW , is the reflection about the line |ψ0⟩. Thus the angle of Uf |y⟩ is ∠Uf |y⟩ = −∠|y⟩.
Similarly, since V is the reflection about |+n⟩, the angle of Gf |y⟩ satisfies ∠Gf |y⟩+∠Uf |y⟩ = 2∠|+n⟩. Thus
∠Gf |y⟩ − ∠|y⟩ = 2∠|+n⟩ for all |y⟩ ∈ W , which simply means Gf is a rotation by 2θ, where θ := ∠|+n⟩.
Note that

sin θ = ⟨+n|ψ1⟩ =
√
M

N
,

so

θ = arcsin

√
M

N
.

Starting from the state |+n⟩, after k iterations, we have β := ∠Gk
f |+n⟩ = ∠|+n⟩ + 2kθ = (2k + 1)θ, so the

resulting state is

|ϕ⟩ := Gk
f |+n⟩ = cosβ|ψ0⟩+ sinβ|ψ1⟩

When we measure |ϕ⟩ is the standard basis, the probability of getting a valid solution x ∈ T1 is given by∑
x∈T1

|⟨x|ϕ⟩|2 =
∑
x∈T1

⟨ϕ|x⟩⟨x|ϕ⟩ = ⟨ϕ|PS1 |ϕ⟩ = sin2 β.
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To maximize this probability, we want β ≈ π
2 , or

k ≈ π/2

2θ
− 1

2
=

π

4 arcsin
√

M
N

− 1

2
.

Note that it is not true that doing more work (i.e. larger k) is always better, since we may overshoot. When

M ≪ N , arcsin
√

M
N ≈

√
M
N , we obtain

k ≈ π

4

√
N

M
.

In general, if we know M , we can set

k =

 π

4 arcsin
√

M
N

 ≤ π

4

√
N

M
,

where ⌊x⌋ is the largest integer no greater than x. Then∣∣∣β − π

2

∣∣∣ ≤ min
{
θ,
π

4

}
.

Indeed, if θ ∈ [π4 ,
π
2 ], then k = 0 and β = θ, so |β − π

2 | ≤
π
4 ≤ θ. If θ ∈ (0, π4 ], then using −1 < ⌊x⌋ ≤ 0, we

obtain |β − π
2 | ≤ θ ≤

π
4 . Therefore, the probability of getting a valid solution is

sin2 β = cos2
(
β − π

2

)
≥ max

{
cos2 θ, cos2

π

4

}
= max

{
1− M

N
,
1

2

}
≥ 1

2
.

Repeating the algorithm ⌈log2 1
ϵ ⌉ times, we find a solution with probability at least 1− ϵ if there is one. The

number of queries is at most

π

4

√
N

M
⌈log2

1

ϵ
⌉.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Grover’s algorithm with known M

Require: f,M, ϵ

1: k ←
⌊

π

4 arcsin
√

M
N

⌋
2: for j = 1, 2, . . . , ⌈log2 1

ϵ ⌉ do
3: |ϕ⟩ ← H⊗n|0n⟩
4: for ℓ = 1, 2, . . . , k do
5: |ϕ⟩ ← Gf |ϕ⟩ ▷ Grover iteration
6: end for
7: x← measurement result of |ϕ⟩ in standard basis
8: if f(x) = 1 then
9: return x

10: end if
11: end for

If M is unknown, we run Grover’s algorithm with k = 0, 1, 2, 22, . . . , 2J iterations, where J = ⌊log2
√
N⌋.
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If M ≥ N/2, Grover’s algorithm with k = 0 finds a solution with probability at least 1
2 . If 1 ≤M < N/2, let

m =
⌊
log2

π

4θ

⌋
.

Note that N−1/2 ≤ θ < π
4 , so 0 ≤ m ≤ J . Grover’s algorithm with 2m iterations finds a solution with

probability

sin2
[
(2m+1 + 1)θ

]
≥ sin2

(π
4
+ θ

)
=

1

2

[
1− cos

(π
2
+ 2θ

)]
=

1

2
[1 + sin(2θ)] ≥ 1

2
.

Therefore, the above algorithm always finds a solution with probability at least 1
2 if there is one. The total

number of queries is at most ∑
0≤j≤J

2j = 2J+1 − 1 ≤ 2
√
N.

If we run Grover’s algorithm for ⌈log2 1
ϵ ⌉ times for each k before moving onto the next and terminate whenever

a solution is found, then with probability at least 1 − ϵ, the algorithm finds a solution with the number of

queries being at most

⌈log2
1

ϵ
⌉

∑
0≤j≤m

2j ≤ 2m+1⌈log2
1

ϵ
⌉ ≤ π

2θ
⌈log2

1

ϵ
⌉ ≤ π

2

√
N

M
⌈log2

1

ϵ
⌉.

In the worst case where M = 0, we have to go through all the iterations, and the number of queries is at

most

⌈log2
1

ϵ
⌉

∑
0≤j≤J

2j ≤ 2
√
N⌈log2

1

ϵ
⌉.

The algorithm is summarized in Algorithm 2.

Algorithm 2 Grover’s algorithm with unknown M

Require: f, ϵ

1: for k = 0, 1, 2, 22 . . . , 2⌊log2

√
N⌋ do

2: for j = 1, 2, . . . , ⌈log2 1
ϵ ⌉ do

3: |ϕ⟩ ← H⊗n|0n⟩
4: for ℓ = 1, 2, . . . , k do
5: |ϕ⟩ ← Gf |ϕ⟩ ▷ Grover iteration
6: end for
7: x← measurement result of |ϕ⟩ in standard basis
8: if f(x) = 1 then
9: return x

10: end if
11: end for
12: end for
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