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Given a function f: {0,1}" — {0, 1}, the goal is to find an = with f(z) = 1. Let T} be the set of inputs
with f-value b, i.e. T, = {z € {0,1}" : f(z) = b} for b € {0,1}. Let S be the state space of n qubits, and S,
the subspace spanned by the orthonormal vectors in Ty, i.e.

Sy =span{|z) : x € T,}, be{0,1}.

Note that Sy = Si-, and each |y) € S has a unique decomposition |y) = |yo) + |y1) with |y) € Sp. Suppose

a quantum oracle Uy implements f as follows. For the basis vectors,

Uyle) —lxy, if x e Ty;
f1r)y =
|z), ifxeTp.

Thus the unitary operator Uy takes the following form,
Up= > (~1)/Wla)al = Ps, — P,
ze{0,1}™

where Ps, = > cp, [7)(z| is the projection onto the subspace S;. Note that Uy is the reflection about the
subspace Sp.

Let )
= — E xp), be{0,1}.

Note that 1) € Sp, and [¢) and [¢)1) form an orthonormal basis of a 2-dimensional subspace W of S. Let

== Y le)=HE"om),
\/Nxe{o,l}"

where N = 2™ and H is the Hadamard gate. Note that

) =+ My e w

where M = |T] is the number of valid solutions. Consider the unitary operator

V= 204" (47— I = HE"(2(0") (0] — )H".



For any |y) € S linearly independent of |[+"),

Viy) =2[+")(+"1y) — y),

SV} + ) = (47l ),

so V is the reflection about the line spanned by |+™) in the 2-dimensional plane spanned by |y) and |+").
Note that W is invariant under Uy and V, ie. Uy/W C W and VW C W. Indeed, for any vector
ly) = alvo) + Blr) € W,
Urly) = alvo) — Bler) € W,

and
Vly) =2(+"|y)|+") —[y) e W.

Thus we can restrict ourselves to W.
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Figure 1: Grover iteration

Let Gy = VU; and let’s see what Gy does to a state |y) € W (see Figure 1). Use polar coordinates in the
plane W and let Z|y) be the angle of |y) measured from |1)g). Recall Uy is the reflection about the subspace Sy,
which, when restricted to W, is the reflection about the line |t19). Thus the angle of Uy|y) is ZUy|y) = —Z|y).
Similarly, since V' is the reflection about |+™), the angle of G|y) satisfies ZG¢|y) + ZUy|y) = 2£|+™). Thus
LGyly) — ZLly) = 2Z|+™) for all |y) € W, which simply means G is a rotation by 26, where 8 := Z|4").

Note that

. N M
sin = (+"[1) = |/ 5

6 = arcsin %
— ”N'

Starting from the state |+"), after k iterations, we have 8 := 4G’;|—|—"> = Z|+") + 2kf = (2k 4+ 1)0, so the
resulting state is

SO

) 1= G¥|+™) = cos Bltbo) + sin Blebr)

When we measure |¢) is the standard basis, the probability of getting a valid solution x € T} is given by

D zle)? = (lz)(w]d) = (6| Ps, @) = sin® B.

xeTy xeT



To maximize this probability, we want 8 ~ 7, or

kzﬂ-—/Q 1 T 1

20 2 4 arcsin % 2

Note that it is not true that doing more work (i.e. larger k) is always better, since we may overshoot. When
M < N, arcsin\/% ~ /X we obtain

In general, if we know M, we can set

IN

I — T T | N
"N darein /M| T 4V M
darcsin /&
where |z is the largest integer no greater than x. Then

o5l = min{e. 3}

Indeed, if 0 € [4, 5], then k =0and 3 =0,s0 |3 — 5| < < 0. If € (0, ], then using —1 < [z] <0, we

us

];
obtain |3 — %| < 6 < 7. Therefore, the probability of getting a valid solution is

M 1 1
sin? B = cos? (B — g) > max {0032 6, cos? %} = max {1 N 2} > 3
Repeating the algorithm [log, %1 times, we find a solution with probability at least 1 — € if there is one. The

number of queries is at most

T |N 1
—1/—]1 1.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Grover’s algorithm with known M
Require: f, M, e

s
N

4 arcsin

: for j=1,2,...,[logy 1] do
6) — HE"(0")
for ¢ =1,2,...,k do

|9) < Gylo) > Grover iteration
end for
x + measurement result of |¢) in standard basis
if f(z) =1 then

return
10: end if
11: end for
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If M is unknown, we run Grover’s algorithm with k = 0,1,2,22,...,27 iterations, where J = |log, VN |.



If M > N/2, Grover’s algorithm with k£ = 0 finds a solution with probability at least % If1 <M< N/2, let

m = {logQ 419J .

Note that N~=1/2 < ¢ < Z.s00 < m < J. Grover's algorithm with 2 iterations finds a solution with

probability

sin? [(2m+1 + 1)9] > sin? (% + 9) = % [1 — cos (g + 29)} = %[1 + sin(26)] >

1
5
Therefore, the above algorithm always finds a solution with probability at least % if there is one. The total

number of queries is at most

d o =2/t —1<2VN.
0<5<J
If we run Grover’s algorithm for [log, %1 times for each k£ before moving onto the next and terminate whenever
a solution is found, then with probability at least 1 — ¢, the algorithm finds a solution with the number of

queries being at most

1 . 1 us 1 T | N 1
m—+1
[log, g] Z 27 < 2™ [log, E] <39 [log, ﬂ <3\ Mﬂogz E]-

0<j<m

In the worst case where M = 0, we have to go through all the iterations, and the number of queries is at

most

flogy =1 99 < 2v/Nlog, -1,

0<j<J

The algorithm is summarized in Algorithm 2.

Algorithm 2 Grover’s algorithm with unknown M
Require: f,e

1: for k=0,1,2,22...,20e:VN] go

2 forj:172,...7[log2%] do

3 |¢) < H"|0")

4 for {=1,2,...,k do

5 |9) + Gylo) > Grover iteration
6: end for
7
8
9

x + measurement result of |¢) in standard basis
if f(z) =1 then
: return z
10: end if
11: end for
12: end for




