Quantum Computer Architecture

Scalable and Reliable Quantum Computers

Greg Byrd (ECE) CSC 801 - Feb 13, 2018

Overview

Tzvetan S. Metodi Arvin I. Faruque Frederic T. Chong

Synthesis Lectures on Computer Architecture

Mark D. Hill, Series Editor

Eleanor Rieffel and Wolfgang Polak

Quantum Computing A Gentle Introduction

Key Concepts

Quantum Computer

Quantum Hardware

Outline

Ion Trap Operation

The ion can move into any of the six adjacent trapping regions.

Move two qubits together to perform gate operation.

Outline

"... errors are so frequent that the **speed of the error correction method** used is critical for the application run-time."

- Quantum states are continuous and therefore errors are continuous. In principle, it could take infinite resources to determine exactly what the error is.
- Measurement destroys the superposition of quantum data, but the only way to extract the error syndrome bits is to measure. Therefore, we can only measure indirectly.
- Quantum data is fundamentally more faulty than classical data. (E.g., 1 error in 10⁸ operations.)
- Quantum states are entangled, affecting how errors propagate.

Steane Method for Error Correction

Two blocks of ancillary qubits, same size as encoded logical qubit.

- **1.** CNOT propagates bit flips (X errors) to $|\overline{+}\rangle$. Measure and correct.
- 2. Reverse CNOT propagates phase flips (Z errors) to $|\overline{0}\rangle.$ Measure and correct.

Can use one set of ancillary qubits, if correction in series.

One logical qubit is encoded using seven physical qubits.

$$\begin{array}{ll} |\overline{0}\rangle & = & |0000000\rangle + |1111000\rangle + |1100110\rangle + |1010101\rangle + \\ & & |0011110\rangle + |0101101\rangle + |0110011\rangle + |1001011\rangle \end{array}$$

Smallest code that allows *transversal* logical gates for:

H, CNOT, X, Z, Y, S

Transversal means that the gate is applied in parallel to all component qubits. The T gate is more complicated.

Recursive error coding allows error rate to be scaled according to the problem size.

• As problem scales (in time and qubits), error rate per logical operation (gate or move) must decrease.

Shor Factorization Speedup

Outline

For most physical implementation technologies (e.g., ion trap), qubits must be near each other to interact in a 2-qubit gate.

Movement is challenging:

- Time to physically move
- Decoherence (error) introduced by movement ops
- Many physical qubits must be moved (e.g., 49 for L2)
- Higher recursion in QEC \Rightarrow qubits are further apart

In large applications, long-range qubit movement is needed.

No-Cloning Rule

Proof.

Suppose a cloning operator U, such that $U |a0\rangle = |aa\rangle$ for all $|a\rangle$.

Let $|a\rangle$ and $|b\rangle$ be orthogonal quantum states.

$$U |a0\rangle = |aa\rangle$$
, and $U |b0\rangle = |bb\rangle$

Consider $|c\rangle = \frac{1}{\sqrt{2}}(|a\rangle + |b\rangle)$. By linearity,

$$U\ket{c0} = rac{1}{\sqrt{2}} (U\ket{a0} + U\ket{b0}) = rac{1}{\sqrt{2}} (\ket{aa} + \ket{bb})$$

However, if U is a cloning operator, then

$$U\ket{c0}=\ket{cc}=rac{1}{2}(\ket{aa}+\ket{bb}+\ket{ab}+\ket{ba})
eqrac{1}{\sqrt{2}}(\ket{aa}+\ket{bb})$$

However, we can use entangled EPR pair to achieve teleportation. We can recreate a state $|q_1\rangle$, even at a distance, but we have to measure the original qubit (and thereby destroy its state).

Alice has qubit $|q_1\rangle$ in unknown state $a|0\rangle + b|1\rangle$.

Create EPR pair $|q_2q_3\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Alice keeps $|q_2\rangle$ and sends $|q_3\rangle$ to Bob.

Teleportation: Step 2

After CNOT and H gate:

$$egin{aligned} |q_1q_2q_3
angle &=rac{1}{2}(& |00
angle\,(a\,|0
angle+b\,|1
angle) \ &+\,|01
angle\,(a\,|1
angle+b\,|0
angle) \ &+\,|10
angle\,(a\,|0
angle-b\,|1
angle) \ &+\,|11
angle\,(a\,|0
angle-b\,|1
angle) \ &+\,|11
angle\,(a\,|1
angle-b\,|0
angle))) \end{aligned}$$

Teleportation: Step 3

When Alice measures $|q_1q_2\rangle$, we know the state of Bob's qubit $|q_3\rangle$, and what transform is needed to restore it to the original state. (See next slide.)

$ q_1q_2 angle$	$ q_3 angle$	Transform	Result
$ 00\rangle$	$a\ket{0}+b\ket{1}$	1	$a\left 0 ight angle+b\left 1 ight angle$
01 angle	$a\ket{1}+b\ket{0}$	Х	$a\ket{0}+b\ket{1}$
10 angle	$a\ket{0}-b\ket{1}$	Ζ	$a\ket{0}+b\ket{1}$
11 angle	a $\ket{1} - b \ket{0}$	ZX	$a\ket{0}+b\ket{1}$

Teleportation: Step 4

Alice sends two cbits (result of measurements) to Bob, who then performs the needed transforms.

Communication through Teleportation

NOTE: Still moving the EPR qubit. Degrades over time/distance. But EPR pairs can be replaced/repaired (EPR *purification*).

Quantum Repeaters

EPR entanglement survives teleportation. Can stage multiple pairs so that each qubit need not travel far.

Picture for third phase is wrong. Should be teleporting EPR qubit in the middle to the right.

Architectural Elements

- Logical qubit
 - Apply 1- and 2-qubit gates
 - Error correction
- Communications channels
 - Teleportation-based
 - Quantum repeaters
 - EPR pair creation and purification

High-Level Architecture

Blank tiles: logical data qubits Shaded tiles: logical ancilla tiles

Compute vs. Memory Tiles

Reasons to specialize tiles for compute vs. storage

- Different encoding schemes
- Limited qubit-level parallelism

Parallelism vs. time for 64-bit adder

QLA: Quantum Logic Array

A detailed proposed architecture based on ion trap technology.

Operation	Time μ s now(future)	Failure Rate now(future)	
Single Gate	1 (1)	$10^{-4} (10^{-8})$	
Double Gate	10 (10)	$0.03 (10^{-7})$	
Measure	200 (10)	$0.01 \ (10^{-8})$	
Movement	20 (10)	$0.005 (5 \times 10^{-8})/\mu m$	
Split	200 (0.1)		
Cooling	200 (0.1)		
Memory time	10 to 100 sec		
Trap Size	$\sim 200 \; (1-5) \; \mu \mathrm{m}$		

Communication Channel

Communication Latency

Time to transmit an L2 qubit (49 physical qubits).

	N=128	N=512	N=1024	N=2048
Logical Qubits	37,971	150,771	301,251	602,259
Toffoli Gates	63,729	397,910	964,919	2,301,767
Total Gates	115,033	1,016,295	3,270,582	11,148,214
Area (m^2)	0.11	0.45	0.90	1.80

Additional gains in area and performance

- Reduced recursion to decrease area
- Introduce memory hierarchy