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Building Blocks for Quantum Computing

OUTLINE

• Challenges of Quantum Computing
• Basic Concepts of Bits and Qubits
• Properties of Linear Algebra Applicable for QC
• Properties of Quantum Mechanics
• Quantum Circuits
• Quantum Computation - Design of a Quantum Computer  
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Objectives for this Module

• Build a common based of knowledge because students come 
from varied backgrounds

• Start with the fundamental representation of information and 
build a comparison of classical vs quantum formulation

• Outline/review the postulates of quantum mechanics
• Combine the representation of information with the constraints 

of quantum mechanics to build basic quantum logic circuits
• (Informational lecture) 

– Describe an actual experimental quantum computer and 
illustrate how it is “programmed” using quantum logic

– Compare to the D-Wave annealing machine approach
• Get to a point at the end of this module where this information 

can be used as a backdrop for building quantum algorithms 
and programs
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Challenges of Quantum Computing
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Difficulties in Developing Algorithms 
for Quantum Computers 

• Problem 1
– If one wants to use quantum mechanics to build a computer, 

one must understand workings of the quantum world to 
know how a quantum computer will process a problem

– However
• All human experiences rooted in the classical world
• Human experience and intuition will tend to think of ideas approaches that 

are biased toward past experiences and expected behaviors
• Quantum computers behave in ways that have no classical analog
• There is no prior direct human experience on which to rely for intuition 

• Problem 2
– Even if an algorithm or program can be shown to be based 

on quantum mechanical systems it must be demonstrated 
that the quantum mechanical algorithm is better than the 
classical equivalent
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Basic Concepts of Bits and Qubits
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Representing Information on a Computer

• Computer has two states   ( “off” and “on” )
• Define two states “0” and “1” ( “bits” )
• Need to be able to represent the state of a system on a 

computer in only terms of “0”s and “1”s
• Need to understand how these “0”s and “1”s can be 

manipulated – how they are transformed when an 
operation is applied to them
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Single Component Representation
• Identify general rules for transforming the state of a 

single bit in every possible way. 
• NOT gate 

• RESET gate - Sets the state to 0 regardless of the input

• These two operations define all possible ways to 
transform the state of a single bit

Initial State Final State
0 not(0) 1
1 not(1) 0

Initial State Final State

0 reset(0) 0

1 reset(1) 0
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What is the Difference a 
“Bit” and a “Qubit”?

• Classical bit will be in a state defined by the values of 
either “0” or “1”

• A quantum bit (Qubit) will also have a state but a qubit 
can be in a state other than the classical value of either a 
“0” or “1”

• Qubit can be said to form a superposition state that can 
be represented by a vector that can be represented as a 
superposition or linear combination of both a “0” or “1”

• Qubits can be described by the mathematics of linear 
algebra and matrices 
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Dirac Notation

• Many texts use Dirac “ket” notation |a> to denote a 
column vector

and a Dirac “bra” notation to denote the Hermitian 

conjugate # of the row vector
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|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

𝑎⃗𝑎
< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗

# The transpose aT of a column vector a is a row vector
# The adjoint is the complex conjugate transpose of a column vector a 
and is sometimes called the Hermitian conjugate
# Unitary matrix U is a complex square matrix whose adjoint equals its 
inverse and the product of U adjoint and the matrix U is the identity matrix 

𝑎𝑎†

𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



Examples of Normalized Vectors 
in Dirac Notation

|a>=     [|0> + |1>] =       [       +       ] =          

|b> = [   |0> - |1>] =          - =              

|c> =    |0> - |1> =         - =          

Comments
– Dirac notation 
– |b> and |c> vectors differ by a “phase” –no analog in classical description of bits
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1-bit Quantum Gates
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 1 0 0
1 + 0 1 1

0 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1 0 1
0 + 0 1 0

1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of a quantum gate

• 2x2 matrix representation of some 1-bit quantum gates
• There are additional 1-bit quantum gates
• Re-visit this in the Quantum Circuit module

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝑖𝑖

|𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 >< 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖|



Symbols for Single Qubit Gates
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Pauli X      X

Pauli Y      Y

Phase        S    

Pauli Z       Z

T𝜋𝜋
8

0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

1 0
0 𝑖𝑖

1 0
0 𝑒𝑒𝑖𝑖

𝜋𝜋
4

Hadamard H
1
2

1 1
1 −1

=

=

=

𝜎𝜎𝑥𝑥

𝜎𝜎𝑦𝑦

𝜎𝜎𝑧𝑧

Pauli Spin Matrices*

* Pauli spin matrices give a hint 
toward potential designs for a 
building a quantum computer 



Basis vectors 1-bit Quantum Gate

• In Dirac notation this is (± and ² are complex 
coefficients)

a = ±|0> + ² |1>         |±|2 + |² |2 = 1
• ± is the amplitude of measuring the |0> state and ² is the 

amplitude of measuring the |1> state

• Common basis is   and                

• Probability to measure the |0> state is |±|2

• Probability to measure the |1> state is |² |2 
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|0 >= 1
0 |1 >= 0

1



Bloch Sphere

• From    can re-write |a> = ±|0> + ² |1>

• This representation is visualized by states that lie of the surface of a 
sphere (Bloch Sphere)
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Figure from Wikipedia 
Bloch Sphere
https://en.wikipedia.org/w
iki/Bloch_sphere

|α|2 + |β|2 = 1

�|𝑎𝑎 >= 𝑒𝑒𝑖𝑖𝑖𝑖(cos
𝜃𝜃
2 |0 > +𝑒𝑒𝑖𝑖𝑖𝑖sin

𝜃𝜃
2 |1 >

https://en.wikipedia.org/wiki/Bloch_sphere


Implications for Gates in Terms of Rotations

• The one qubit states can be represented as points on the 
Bloch sphere

• The matrices      𝜎𝜎𝑦𝑦 and are associated with rotations about 
the x, y, and z axes

• Reversible one qubit gates can be viewed as rotations in this 
3 dimensional representation

• Comments
– These sigma matrices (Pauli Spin Matrices) have a special 

relationship in physics to particles that carry a property 
known as “spin”

– These rotation gates often get associated with spins 
and/or ions interacting with radio frequency pulses or 
lasers
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Rotation Operators

• Construct a mathematical description of rotations
• Pauli matrices give rise to 3 useful classes of unitary 

matrices (rotation operators) when they are 
exponentiated
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𝑒𝑒−𝑖𝑖𝑖𝑖·𝑛𝑛𝜙𝜙2

∧

= cos
𝜙𝜙
2

− 𝑖𝑖sin(
𝜙𝜙
2

)𝜎𝜎 · 𝑛𝑛
∧

𝑒𝑒𝐴𝐴 = �

𝑘𝑘=0

∞
1
𝑘𝑘!𝐴𝐴

𝑘𝑘



Rotation Gates

• Use the identity

• The R gate can specify a rotation in
a specific direction by a specific angle

example
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�𝑅𝑅
𝑛𝑛
∧(𝜃𝜃) ≡ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛·𝜎𝜎2

∧

= cos(
𝜃𝜃
2

)𝐼𝐼 − 𝑖𝑖sin(
𝜃𝜃
2

)(𝑛𝑛𝑥𝑥𝑋𝑋 + 𝑛𝑛𝑦𝑦𝑌𝑌 + 𝑛𝑛𝑧𝑧𝑍𝑍

Ry(   /4)𝜋𝜋



Additional Mathematical Tools for QC
Outer Product and Tensor Product

• The outer product of two coordinate vectors a and b
(represented by a b) is a matrix c such that the 
coordinates satisfy cij = ai bj

• The outer product for general tensors is also called the 
tensor product

• The tensor product of (finite dimensional) vector spaces A 
and B has dimension equal to the product of the 
dimensions of the two factors  dim(A    B) dim(A) x dim(B)

1/30/2018
Building Blocks for Quantum Computing 

Patrick Dreher
19

⊗
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Additional Mathematical Tools for QC
Exclusive Disjunction

• Exclusive disjunction of a    b =(a   b)      (a   b)
• Truth table for this operation is 

1/30/2018
Building Blocks for Quantum Computing 

Patrick Dreher
20

⊕ ∨ ∧ ¬ ∧

Input
Outputa b

0 0 0

0 1 1

1 0 1

1 1 0



Multi-bit Representation of States

• One cannot do much with one-bit classical gates
• Two states are represented by a pair of orthonormal 2

vectors  |a> =       , |b> = 
• The four states are four orthogonal vectors in four 

dimensions formed by the tensor products
|a>   |a>, |a>   |b>, |b>   |a>, |b>   |b>

• Two states can also be represented by
|aa>, |ab>, |ba>, |bb>

• With this construct, can now examine two state gates
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Mapping Logic Gates to the 
Axioms of Quantum Mechanics

• Constructed both single input and multi input logic gates
• Next - incorporate properties of quantum mechanics to 

design logic gate building blocks for a quantum computer
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Properties of Linear Algebra 
Applicable for Quantum Computing
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Review Basic Linear Algebra 
• Vector Space 

A vector space is a collection vectors, which may be added together 
and multiplied by scalar quantities and still be a part of the collection of 
vectors 

• Linear Dependence and Linear Independence
A set of vectors is said to be linearly dependent if one of the vectors in 
the set can be defined as a linear combination of the others; if no vector 
in the set can be written in this way, then the vectors are said to be 
linearly independent.

• Basis Vectors 
a set of elements (vectors) in a vector space V is called a basis, or a set 
of basis vectors, if the vectors are linearly independent and every vector 
in the vector space is a linear combination of this set. In more general 
terms, a basis is a linearly independent spanning set. A basis is 
a linearly independent spanning set
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Properties and Definitions of a 
Vector Space

• Vector Space V containing vectors A, B, C must have the 
following properties
– Commutativity [ A+B=B+A ]
– Associativity of vector addition [ (A+B)+C=A+(B+C)  ]
– Additive identity  [0+A=A+0=A ]  for all A 
– Existence of additive inverse: For any A, there exists 

a (-A) such that  A+(-A)=0
– Scalar multiplication identity [ 1A=A ]
– Given scalars r and s

• Associativity of scalar multiplication [ r(sA)=(rs)A ]
• Distributivity of scalar sums [ (r+s)A=rA+sA ]
• Distributivity of vector sums [ r(A+B)=rA+rB ]
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Vector Space and Basis Vectors

• Many linear combinations can be constructed to 
represent the states that lie on the surface of the sphere

• Set of all vectors that can lie on the surface of the sphere 
can be considered as a vector space

• Use the concept of basis vectors to identify a set of 
linearly independent vectors in that vector space with the 
requirement that every vector in the vector space is a 
liner combination of that set 

1/30/2018
Building Blocks for Quantum Computing 

Patrick Dreher
26



Review of Linear Algebra

• A set of basis vectors is defined {ei } i=1,…n written in “bra-ket” 
notation satisfies

• An arbitrary vector can be written as a linear superposition of basis 
states

• The coefficients are determined by the inner product
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< 𝑒𝑒𝑖𝑖|𝑒𝑒𝑗𝑗 >= 𝛿𝛿𝑖𝑖𝑖𝑖

𝑎𝑎 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖

< 𝑒𝑒𝑘𝑘|𝑎𝑎 >=< 𝑒𝑒𝑘𝑘|�
𝑖𝑖

𝛼𝛼𝑖𝑖 𝑒𝑒𝑖𝑖 >= �
𝑖𝑖

𝛼𝛼𝑖𝑖 < 𝑒𝑒𝑘𝑘|𝑒𝑒𝑖𝑖 >= 𝛼𝛼𝑘𝑘

𝑎𝑎 = �
𝑖𝑖

𝑒𝑒𝑖𝑖 < 𝑒𝑒𝑖𝑖|𝑎𝑎 >



Postulates of Quantum Mechanics
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Computation Using the 
Properties of Quantum Mechanics 

• Quantum theory is a mathematical model of the physical 
world

• The physical world at the quantum level exhibits 
behaviors that have no analog to the lifetime of everyday 
experiences 

• If the properties of quantum mechanics are going to be 
applied for computations, it is important to understand the 
properties and behavior of quantum mechanics in order 
to properly design devices, algorithms and programs
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Bad News and Good News

• Bad News
– Quantum mechanics is a difficult subject
– Our intuition and expected reasoning that is based on 

our everyday experience fails us when applied to the 
quantum world

• Good News
– Most of the complexity of quantum mechanics deals 

with continuous systems in space or time
– A quantum computer can be described by discrete (2-

state) systems and discrete (unitary) transformations
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The Properties of Quantum Mechanics

• Quantum mechanics of a closed quantum system can be 
described in terms of 
– States
– Observables
– Measurements
– Dynamics
– Rules to combine two systems to obtain a composite 

system.
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Postulates of Quantum Mechanics

Mathematical representation of a quantum system
– Every isolated system has an associated complex 

vector space with an inner product that is the state 
space of the system

– A unit vector in the system’s state space is a state 
vector that is a complete description of the physical 
system
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Postulates of Quantum Mechanics

Time Evolution of a Quantum Mechanical System
• The evolution of a closed system that evolves over time 

is expressed mathematically by a unitary operator that 
connects the system between time t1 to time t2 and that 
only depends on the times t1 and t2

• The time evolution of the state of a closed quantum 
system is described by the Schrodinger equation
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𝑑𝑑
𝑑𝑑𝑑𝑑

|𝛹𝛹 >= 𝐻𝐻|𝛹𝛹 >



Measurements on a Quantum Mechanical System
• Quantum measurements are the result of operators 

acting on the state space of the system being measured
– A quantum system in a state |a> before a 

measurement will have a probability of measuring an 
expectation value “x” given by P(x)=<a|          |a>

– The state of the system after the measurement is

– The operator    satisfies the completeness relation 

(i.e. the probabilities sum to one  )              
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Postulates of Quantum Mechanics

ℚ

ℚ𝑥𝑥
†ℚ𝑥𝑥

ℚ𝑥𝑥|𝑎𝑎 >

< 𝑎𝑎|ℚ𝑥𝑥
†ℚ𝑥𝑥|𝑎𝑎 >

ℚ
�

𝑥𝑥
ℚ𝑥𝑥
† ℚ𝑥𝑥 = 𝐼𝐼

�
𝑥𝑥
𝑃𝑃(𝑥𝑥) = 𝐼𝐼



Composite System
• Given that the Hilbert space of system A is HA and the 

Hilbert space of system B is HB, then the Hilbert space of 
the composite systems AB is the tensor product HA  HB
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Properties of a Hilbert Space

• It is a vector space over the complex numbers with an 
inner product <b|a> 

• It maps an ordered pair of vectors to the complex 
numbers with the following properties
– Positivity <a|a> > 0   for |a> > 0
– Linearity <c|(±|a> + ² |b>) =  ±<c|a> + ² <c|b> where ±

and ² are complex constants
– Skew symmetry <b|a> = (<a|b>)*

• It is complete as expressed by the norm ||a|| = (<a|a>)1/2

1/30/2018
Building Blocks for Quantum Computing 

Patrick Dreher
36



Last Slide

1/30/2018
Building Blocks for Quantum Computing 

Patrick Dreher
37


	Building Blocks for Quantum Computing�PART 1
	Building Blocks for Quantum Computing
	Objectives for this Module
	Challenges of Quantum Computing
	Difficulties in Developing Algorithms �for Quantum Computers 
	Basic Concepts of Bits and Qubits
	Representing Information on a Computer
	Single Component Representation
	What is the Difference a �“Bit” and a “Qubit”?
	Dirac Notation
	Examples of Normalized Vectors �in Dirac Notation
	1-bit Quantum Gates
	Symbols for Single Qubit Gates
	Basis vectors 1-bit Quantum Gate
	Bloch Sphere
	Implications for Gates in Terms of Rotations
	Rotation Operators
	Rotation Gates
	Additional Mathematical Tools for QC�Outer Product and Tensor Product
	Additional Mathematical Tools for QC�Exclusive Disjunction
	Multi-bit Representation of States
	Mapping Logic Gates to the �Axioms of Quantum Mechanics
	Properties of Linear Algebra �Applicable for Quantum Computing�
	Review Basic Linear Algebra 
	Properties and Definitions of a �Vector Space
	Vector Space and Basis Vectors
	Review of Linear Algebra
	Postulates of Quantum Mechanics
	Computation Using the �Properties of Quantum Mechanics 
	Bad News and Good News
	The Properties of Quantum Mechanics
	Postulates of Quantum Mechanics
	Postulates of Quantum Mechanics
	Postulates of Quantum Mechanics
	Postulates of Quantum Mechanics
	Properties of a Hilbert Space
	Last Slide

