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Building Quantum Circuit Gates Using 
Qubits and Quantum Mechanics
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Classical Gates versus Quantum Gates

• Quantum physics puts restrictions on the types of gates 
that can be incorporated into a quantum computer

• The requirements that 
– A quantum gate must incorporate the linear 

superposition of pure states that includes a phase
– all closed quantum state transformations must be 

reversible 
restrict the type of logic gates available for constructing 
a quantum computer

• The classical NOT gate is reversible but the AND, OR 
and NAND gates are not
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Classical Logic Gates

• There are several well known logic gates 
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Quantum Property of Reversibility 
and Constraints of Gate Operations

• Reversibility can be quantified mathematically through the 
matrix representation of the logic gate

• The IDENTITY operation and NOT gates are “reversible” 
the classical NOT gate are reversible, the AND, OR and 
NAND gates are not

• The outcome of the gate can be undone by applying other 
gates, or effectively additional matrix operations

• The matrix has the property of preserving the length of 
vectors, implying that the matrices are unitary, thereby 
satisfying the Axiom 4 requirement for quantum mechanics

• For gates represented by a matrix, the unitarity condition is 
necessary and sufficient for ensuring that pure states get 
mapped to pure states

1-February-2018
Building Blocks for Quantum Computing 

Patrick Dreher
5



Recall Symbols for Single Qubit Gates
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Pauli Spin Matrices*

* Pauli spin matrices give a hint 
toward potential designs for a 
building a quantum computer 



Recall Rotation Gates

• Use the identity

• The R gate can specify a rotation in
a specific direction by a specific angle

example
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Reversibility for Multi-Qubit Gates

• The output of the 1 bit NOT gate can be reversed by 
applying another NOT gate 

• Construct a 2 qubit gate that satisfies the reversibility 
condition (i.e. gate needs to be represented by a unitary 
matrix)
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Reversible 2 Qubit CNOT Gate
• A two qubit quantum logic gate has a control qubit and a 

target qubit
• The gate is designed such that if 

– the control bit is set to 0 the target bit is unchanged
– The control bit is set to 1 the target qubit is flipped

• Can be expressed as |a, b>       |a, b     a>
• The CNOT gate is generally used in quantum computing 

to generate entangled states
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⊕

Input Output

|00> |00>

|01> |01>

|10> |11>

|11> |10>



Controlled-NOT Gate

1-February-2018
Building Blocks for Quantum Computing 

Patrick Dreher
10

Matrix representation of the CNOT gate

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|b>

|a> |a>

|b    a>⊕

†
CNOT CNOTU U I=

|aa>  |aa> |ba>  |bb>
|ab>  |ab> |bb>  |ba>

Homework – Construct the UCNOT from the rules for building a CNOT gate and show that 
this gate is reversible and therefore a good quantum gate



Controlled U Gate

• Extension of the controlled CNOT gate
• Given any unitary matrix U can construct a universal gate 

with the properties
– Single control qubit
– N target qubits

• Outputs
– If the control bit is set to “0” the target bits are 

unchanged
– If the control bit is set to “1” then the gate U is applied 

to the target bits
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|a> |a>

U



Other Controlled Gates
• Controlled U gate is a gate that operates on two qubits in 

such a way that the first qubit serves as a control. It 
maps the basis states as follows

|00>  |00>
|01>  |01>
|10>  |1>    U|0> =|1>    (u00|0>+u10|1>)
|11>  |1>     U|1> =|1>    (u01|0>+u11|1>)

• U represents one of the Pauli matrices 
• Controlled-X, Controlled-Y, Controlled-Z gates
1-February-2018

Building Blocks for Quantum Computing 
Patrick Dreher

12

⊗ ⊗

⊗ ⊗

𝐶𝐶 𝑈𝑈 =

1 0 0 0
0 1 0 0
0 0 𝑢𝑢00 𝑢𝑢01
0 0 𝑢𝑢10 𝑢𝑢11

𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦 𝜎𝜎𝑧𝑧



What Happens When Multiple CNOT 
Gates Are Combined?

1-February-2018
Building Blocks for Quantum Computing 

Patrick Dreher
13

|a>

|b>
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Combine Multiple CNOT Gates
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a b a     b

0 0 0

0 1 1

1 0 1

1 1 0

⊕

|a>

|b>

|a>

|a    b>⊕



Combine Multiple CNOT Gates
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a b a     b a a     
(a    b)

0 0 0 0 0

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

⊕ ⊕
⊕

|a>

|b>

|a    (a    b)>

|a    b >⊕

⊕ ⊕



Combine Multiple CNOT Gates
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a b a     b a b

0 0 0 0 0

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

⊕

|a>

|b>

|b>

|a    b >⊕



Combine Multiple CNOT Gates
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a b a     b a b a     b b     (a    b) 

0 0 0 0 0 0 0

0 1 1 0 1 1 0

1 0 1 1 0 1 1

1 1 0 1 1 1 1

⊕⊕ ⊕ ⊕

|a>

|b>

|b>

|b    (a    b>⊕ ⊕



SWAP Gate
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a b a     b a a      (a    b) a     b a

0 0 0 0 0 0 0

0 1 1 0 1 1 0

1 0 1 1 0 1 1

1 1 0 1 1 1 1

⊕ ⊕ ⊕ ⊕

|a>

|b>

|b>

|a>



Matrix Representation of the SWAP Gate
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𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Truth Table for the SWAP Gate

Input Output

|00> |00>

|01> |10>

|10> |01>

|11> |10>

Homework – Construct the USWAP from the rules for building a SWAP gate and show that 
this gate is reversible and therefore a good quantum gate

SWAP Gate circuit representation

X

X



Toffoli Gate

• The Toffoli gate is a 3-bit gate, which is universal for 
classical computation

• If the first two bits are in the state |1>, it applies a Pauli-X 
(NOT) on the third bit, otherwise the state is left unchanged
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|c>

|b> |b>

|c     ab>⊕

|a> |a>



Properties of Toffoli Gates

• Toffoli Gate is a reversible gate (i.e. UT
-1UT=I) or 

• Toffoli gate is used to replace a classical circuit with the 
equivalent reversible gate

• Two bits are control bits (|a> and |b>) and target bit |c> is 
flipped as per the truth table

(a, b, c)  (a, b, c    ab)  (a, b, c)
• Toffoli gate and be used to simulate a NAND Gate
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⊕

|1>

|b> |b>

|1     ab> =     |ab>⊕

|a> |a>

¬

¬



Toffoli Gate Truth Table and Matrix

INPUT OUTPUT

a b c a’ b’ c’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

X Gate
Pauli       rotation matrix𝜎𝜎𝑥𝑥



Toffoli Gate as a Universal Gate

• A Toffoli gate constructs the AND logic state when c = 0
• A Toffoli gate constructs the NAND when c = 1
• Every  Boolean function has a reversible implementation 

using Toffoli gates
• There is no universal reversible gate with fewer than 

three inputs 
•
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A Reversible Universal Logic Gate

• A controlled SWAP can be defined as 
F=|0><0|     + |1><1|    S
where S is the usual swap operation
S=|00><00| + |01><01| = |10><10| + |11><11|

• The number of 1s is conserved between the input and 
output (conservative reversible logic gate)

• This reversible universal logic gate and can be 
constructed as a 3-bit gate that performs a controlled 
swap
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Fredkin Gate (CSWAP) Properties

• Property that the |c> is the control bit and is not changed 
by the Fredkin gate

• If |c>=0 then |a> and |b>
are unchanged

• If |c>=1 then |a> and |b>
are swapped

• The original Fredkin Gate 
settings can be recovered by applying the Fredkin
gate twice
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|a>

X

X

|b>

|c>

|a’>

|b’>

|c’>



Fredkin Gate Truth Table and Matrix

INPUT OUTPUT

a b c a’ b’ c’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

X Gate
Pauli       rotation matrix𝜎𝜎𝑥𝑥



Fredkin Gates Mapping 
Classically Irreversible Gates
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Other Diagrams and Circuit Symbol 
Nomenclature for Quantum Gates
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Single qubit propagating forward in time
Classical bit propagating forward in time

n
n qubits propagating forward in time

Measurement projection onto pure states |0> and |1>

Other gates
• Single qubit gates already illustrated
• Additional multi-qubit gates



Summary -- Gates

• Any quantum gate that is used to construct quantum 
computing operations must have a truth table that 
preserves the following
– The gates must operate in a complex vector space
– Complex vector space linear transformations that 

preserve orthogonality are unitary transformations
– The dynamics that takes states from t1 to t2 are 

restricted to transformations that preserve this 
orthogonality and are therefore represented by unitary 
matrices
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Quantum Circuits

• A quantum circuit is a sequence of gates connected by 
“wires” (qubit propagating forward in time)

• A quantum circuit is limited fixed width that corresponds 
to the number of qubits being processed 

• Goal is to construct a circuit structure that 
– conforms to the postulates of quantum mechanics 
– Independent of physical technology
– Functionally correct
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Quantum Circuits

• The 1 qubit rotation gates plus the universal gates that 
have been discussed form the “lego building blocks” for 
constructing arbitrarily complex quantum circuits 

• Needs higher level of care that just randomly picking and 
combining rotation gates and universal gates

• Each proposed quantum circuit must be validated that 
– It satisfies the properties of quantum mechanics
– Produces the correct functionality 
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Numerous Types of Quantum Circuits

• Correct combinations of gates represented by single bit 
rotations and universal gates can function as 
– Reversible adders / subtractors
– Half adders /subtractors
– Full adders /subtractors
– etc…
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Example of a Quantum Circuit

• Construct a 1 bit full adder using Toffoli gates and 
controlled CNOT gates

• This quantum circuit has 5 inputs 
|x> and |y> are the data bits
|c> is the incoming carry bit
|s> is the sum of |x> and |y> (modulo 2)
|c’> is the new carry bit
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1 bit Full Adder Circuit 
with Toffoli and CNOT (Feynman) Gates
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X



1 bit Full Adder Circuit 
with Toffoli and CNOT (Feynman) Gates
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1

X 0

Y 1

0 0

0 0



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1

X 0 0

Y 1 1

0 0 0

0 0 0



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1 1

X 0 0 0

Y 1 1 1

0 0 0 0

0 0 0 0



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1 1 1

X 0 0 0 0

Y 1 1 1 1

0 0 0 0 0

0 0 0 0 1



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1 1 1 1

X 0 0 0 0 0

Y 1 1 1 1 1

0 0 0 0 0 1

0 0 0 0 1 1



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1 1 1 1 1

X 1 1 1 0 0 0

Y 1 1 1 1 1 1

0 0 0 0 0 1 1

0 0 1 0 1 1 1



1 bit Full Adder Sample Calculation
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|c>

|y>

|x>

|0>

|0>

|c>

|x>

|y>

|s>

|c’>X X X

X X X

C 1 1 1 1 1 1 1

X 0 0 0 0 0 0 0

Y 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0

0 0 0 0 1 1 1 1

|c>

|x>

|y>

|s>

|c’>



Comparison of Classical and Quantum 
Aspects of Computation *
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* arXiv:quant-ph/0207118v1 19 Jul 2002



Design Constraints 
for Building a Quantum Computer
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Modifications Needed to Map From 
Classical to Quantum Computing 

• A classical computer with “n bits” can have 2n special 
orthonormal states (classical basis)

• A quantum computer may have arbitrary unit vectors 
from the entire vector space consisting of all linear 
combinations of classical basis states with complex 
coefficients (called amplitudes)

• Initial state will result in superposition of all 
corresponding output values 

• (Note - superposition of all possible states is the origin of 
the expected exponential computational speedup)
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Modifications Needed to Map From 
Classical to Quantum Computing 

Measurements 
• Measurements in a classical computer are not a factor in 

the overall computational process
• This is not true for quantum computing
• From axiom 4 of quantum mechanics 

a state evolves over time and is expressed mathematically by a unitary 
operator (transformation) for a closed quantum mechanics system

• This requires that a quantum gate must be reversible 
under unitary time evolution
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Quantum Information No Cloning Theorem

• A CNOT gate can copy a classical bit in some unknown 
state “x” and an additional bit initialized to zero and 
provide an output where both bits are in a state “x”
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Quantum Information No Cloning Theorem
• Consider the CNOT quantum gate and a linear superposition state ±

|0> + ² |1> and an additional bit initialized to zero

• Quantum mechanically this output is not possible because the 
general state vector |a>|a> = (± |0> + ² |1>) (± |0> + ² |1>) 

|a>|a> = ±2|00> + ±² |01> + ² ±|10> + ² 2|11>
• In general ±² `  0 and ² ± `  0 and so the quantum circuit does not 

copy the part of the state vector with the terms ±² |01> + ² ±|10> 
• The no-cloning theorem states that it is impossible to create an 

identical copy of an arbitrary unknown quantum state
• This implies that signal fanout is not permitted

1-February-2018
Building Blocks for Quantum Computing 

Patrick Dreher
47

α |00> + β |11>
α |0> + β |1>

|0>



Measurements on a Quantum Computer

• Start with two quantum systems 1 and 2 that can interact 
with each other

• The act of measurement entangles the two systems 
quantum mechanically

• Entanglement destroys the superposition of states of 
system 1 so that some of the relative phases of the 
system 1 superposition are no longer present

• Result is a collapse of the states of system 1 that cannot 
be re-constructed
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Coding Reversibility into a Quantum Circuit 

• The action of every reversible quantum gate can be 
represented by matrix multiplication, where the matrix has the 
additional property of preserving the length of vectors. Such 
matrices are called “unitary” and are characterized by the 
equation A†A = l

• For gates represented by a matrix, the unitarity condition is 
necessary and sufficient for ensuring that pure states get 
mapped to pure states

• Because qubit states can be represented as points on a 
sphere, reversible one-qubit gates can be thought of as 
rotations of the Bloch sphere. This is why such quantum gates 
are often called “rotations”

• Quantum circuits are constructed from the combined actions 
of unitary transformations and single bit rotations

1-February-2018
Building Blocks for Quantum Computing 

Patrick Dreher
49



Now Have the Necessary Building Blocks 
to Construct a Quantum Computer

1. Understand concepts of a single qubit and two qubits
2. Have basic Linear Algebra to mathematically describe how 

qubits are expressed and transform over time 
3. Have the basic postulates of quantum mechanics to verify 

that qubit transformations obey properties of QM
4. Identified and categorized all types of 1 qubit transformations 

(rotations)
5. Constructed several universal (reversible) gates that 

transform according to the postulates of QM
6. Introduced idea of quantum circuits that are use rotation 

gates and universal gates to evolve qubits in time 
7. Now can build a quantum computer and design/assemble 

sequences of rotation and universal transformation that can 
“program” this quantum computer 
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– Next Step –
How does one build a quantum computer 

that can execute a “program” 
constructed of rotation and universal 

gates?
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