# Building Blocks for Quantum Computing Part III

### "Quantum Mechanics and Atomic Physics " Primer

Patrick Dreher CSC801 – Seminar on Quantum Computing Spring 2018

1

### Goal Is To Understand The Principles And Operation of the Trapped Ion Quantum Computer (TIQC)

- Building Blocks for Quantum Computing Part I
- Building Blocks for Quantum Computing Part II
- Building Blocks for Quantum Computing Part III Quantum Mechanics Primer
- Building Blocks for Quantum Computing
   Design and Construction of the TIQC Part IV
- Building Blocks for Quantum Computing Operation of the TIQC – Part V

# What Components are Included in the Experimental Apparatus of an Ion Trap QC



NIST Ion Trap Apparatus

# **Key Components in a TIQC**

- To discern how a Trapped Ion Quantum Computer (TIQC) works need to identify key components
  - Atoms and Materials
  - Electromagnetic fields
  - Lasers
  - Experimental samples are deposited in extremely low temperature experimental chambers (cryostats)
- Examine these components one at a time to understand their role in a TIQC

### "Quantum Mechanics Primer" for Atoms and Materials

### Start by Selecting a Material for the TIQC

- Experimentalists select specific elements because
  - Unique atomic properties when interacting with electromagnetic waves
  - Various properties of the atom can be mapped to the operations of a qubit
- Questions
  - What is the selection criteria for specific materials?
  - How and why do they work in a TIQC?

### **Properties of All Materials**

- All materials are atoms that are made of protons, neutrons and electrons
- Protons and neutrons form the nucleus of the atom
- Electrons surrounding nucleus reside in atom's energy levels
- Electrons occupy energy shells surrounding the nucleus
- Inner shells will fill first
- All types of atoms are globally classified and organized in a Periodic Table of the Elements



# **Periodic Table of Elements**

|                                                                                                 | 1                                                                                                                  | 2                                         | 3                                                     | 4                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                             | 7                                          | 8                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                              | 11                                                                                                                                                                                                                                                                                    | 12                                            | 13                                                                                                                                                                                                 | 14                                                               | 15                                                        | 16                                                   | 17                                                            | 18                                                                                                               |               |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| 1                                                                                               | 1 <sup>1</sup><br>H<br>Hydrogen<br>1.00794                                                                         | Atomic #<br>Symbol<br>Name<br>Atomic Mass | С                                                     | Solid                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [                                             |                                            | Metals                                                                                                                                                                                 | ;                                                                                                                                                                                                                                                                                                                                                               | ]                                                                                                                                               | Nonmet                                                                                                                                                                                                                                                                                | als                                           |                                                                                                                                                                                                    |                                                                  |                                                           |                                                      |                                                               | 2 <sup>2</sup><br>He<br>Helium<br>4.002802                                                                       | К             |
| 2                                                                                               | 3<br>Li<br>Lithium<br>6.941                                                                                        | 4 2<br>Be<br>Beryllium<br>9.012182        | H.<br>H                                               | g Liquid<br>Gas                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alkali me                                     | Alkaline<br>earth me                       | Lanthanc                                                                                                                                                                               | netals                                                                                                                                                                                                                                                                                                                                                          | Poor me                                                                                                                                         | 0<br>Other<br>nonmeta                                                                                                                                                                                                                                                                 | Noble ga                                      | 5 23<br>B<br>Boron<br>10.811                                                                                                                                                                       | 6 24<br>C<br>Carbon<br>12.0107                                   | 7 25<br>N<br>Nitrogen<br>14.0067                          | 8 <sup>2</sup><br>0<br>Oxygen<br>15.9994             | 9 <sup>2</sup> / <sub>7</sub><br>F<br>Fluorine<br>18.9984032  | 10 %<br>Ne<br>Neon<br>20.1797                                                                                    | ĸ             |
| 3                                                                                               | 11<br><b>Na</b><br><sup>Sodium</sup><br>22.98976928                                                                | 12 2<br>Mg<br>Magnesium<br>24.3050        | R                                                     | <b>f</b> Unknov                                        | vn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tals                                          | tals                                       | Actinoids                                                                                                                                                                              | 3 -                                                                                                                                                                                                                                                                                                                                                             | tals                                                                                                                                            | <u></u>                                                                                                                                                                                                                                                                               | ises                                          | 13 28<br>Al<br>Aluminium<br>28.9815388                                                                                                                                                             | 14 <sup>2</sup><br>Si<br>Silicon<br>28.0855                      | 15 <sup>2</sup><br><b>P</b><br>Phosphorus<br>30.973762    | 16 28<br>Sulfur<br>32.085                            | 17 28<br>CI<br>Chlorine<br>35.453                             | 18 <sup>2</sup><br>Ar<br>Argon<br>39.948                                                                         | K<br>L<br>M   |
| 4                                                                                               | 19<br>K<br>Potassium<br>39.0983                                                                                    | 20 28<br>Ca 28<br>Calcium<br>40.078       | 21 <sup>2</sup><br><b>Sc</b><br>Scandium<br>44.955912 | 22<br><b>Ti</b><br><sup>11</sup><br>Titanium<br>47.887 | 23 23 28<br>V 11<br>Vanadium<br>50.9415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 28<br>Cr 13<br>Chromium<br>51.9961         | 25<br>Mn<br>Manganese<br>54.938045         | <sup>2</sup><br><sup>3</sup><br><sup>13</sup><br><sup>13</sup><br><sup>13</sup><br><sup>13</sup><br><sup>13</sup><br><sup>13</sup><br><sup>13</sup>                                    | <sup>2</sup><br><sup>14</sup><br><sup>14</sup><br><sup>2</sup><br><b>Co</b><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup>                                                                                                                                                     | 28<br>Ni<br>Nickel<br>58.6934                                                                                                                   | 29<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>9<br>1<br>2<br>3<br>2<br>9<br>1<br>2<br>9<br>1<br>2<br>9<br>1<br>2<br>9<br>1<br>2<br>9<br>1<br>2<br>9<br>1<br>1<br>2<br>9<br>1<br>1<br>1<br>2<br>9<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1 | 30 28<br><b>Zn</b> 2<br>Zino<br>65.38         | 81 8<br><b>Ga</b> 3<br>Ballium<br>9.723                                                                                                                                                            | 32 <sup>2</sup><br><b>Ge</b> <sup>18</sup><br>Germanium<br>72.84 | 33 2<br><b>As</b><br>Arsenic<br>74.92160                  | 34 28<br>Se 8<br>Selenium<br>78.96                   | 35 28<br>Br <sup>18</sup><br>Bromine<br>79.904                | 36 <sup>2</sup><br>Kr <sup>18</sup><br>Krypton<br>83.798                                                         | K L<br>M<br>N |
| 5                                                                                               | 37<br><b>Rb</b><br><sup>Rubidium</sup><br>85.4678                                                                  | 38 28<br>Sr 82<br>Strontium<br>87.62      | 39 2<br>Y 18<br>Yttrium<br>88.90585                   | 40<br><b>Zr</b><br><sup>2</sup> irconium<br>91.224     | 41 28<br>Nb 12<br>Niobium<br>92.90838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42 28<br>Mo 18<br>Molybdenum<br>95.96         | 43<br><b>Tc</b><br>Technetium<br>(97.9072) | <sup>2</sup><br><sup>8</sup><br><sup>18</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup><br><sup>14</sup>  | <sup>2</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>18</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup>                                                                                                      | 46<br>Palladium<br>108.42                                                                                                                       | <sup>2</sup><br>8<br><b>Ag</b><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup>                                                                                        | 48 28<br>Cd 18<br>Cadmium<br>112.411          | 19 2<br>18<br><b>n</b> 18<br>13<br>14ium<br>14.818                                                                                                                                                 | 50 28<br><b>Sn</b> 18<br>Tin<br>118.710                          | 51 28<br><b>Sb</b> 18<br>Antimony<br>121.780              | 52 28<br><b>Te</b> 18<br>Tellurium<br>127.60         | 53 2<br>8<br>18<br>18<br>18<br>18<br>7<br>Iodine<br>128.90447 | 54 28<br>Xe 18<br>Xenon<br>131.293                                                                               | K L M NO      |
| 6                                                                                               | 55<br><b>CS</b><br>Caesium<br>132.9054519                                                                          | 56 28<br>Ba 18<br>Barium 2                | 57–71                                                 | 72<br><b>Hf</b><br><sup>11</sup><br>Hafnium<br>178.49  | 73 28<br><b>Ta</b><br>180.94788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74 28<br>W 18<br>Tungsten 2<br>183.84         | 75<br><b>Re</b><br>Rhenium<br>188.207      | <sup>2</sup><br><sup>18</sup><br><sup>18</sup><br><sup>22</sup><br><sup>20</sup><br><sup>20</sup><br><sup>20</sup><br><sup>20</sup><br><sup>20</sup><br><sup>20</sup><br><sup>20</sup> | <sup>2</sup><br><sup>18</sup><br><sup>12</sup><br><sup>14</sup><br><sup>1</sup><br><sup>11</sup><br><sup>11</sup><br><sup>12</sup><br><sup>11</sup><br><sup>11</sup><br><sup>13</sup><br><sup>14</sup><br><sup>11</sup><br><sup>11</sup><br><sup>11</sup><br><sup>12</sup><br><sup>12</sup><br><sup>11</sup><br><sup>11</sup><br><sup>12</sup><br><sup>12</sup> | 78<br><b>Pt</b><br>Platinum<br>195.084                                                                                                          | <sup>2</sup><br><sup>8</sup><br><sup>8</sup><br><sup>7</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup>                                                          | 80 28<br>Hg 18<br>Mercury 2<br>200.59         | 81 2<br><b>TI</b> 32<br>hallium 3<br>04.3833                                                                                                                                                       | 82 2<br><b>Pb</b> 32<br>Lead 4<br>207.2                          | 83 2<br>Bi 18<br>Bismuth 208.98040                        | 84 2<br><b>Po</b><br>Polonium<br>(208.9824)          | 85 28<br>At 32<br>Astatine 7<br>(209.9871)                    | 86 2<br><b>Rn</b> 32<br>Radon (222.0176)                                                                         | KLMNOP        |
| 7                                                                                               | 87 2<br>Fr 18<br>Francium 1<br>(223)                                                                               | 88 2<br>Ra 18<br>Radium 22<br>(226)       | 89–103                                                | 104<br><b>Rf</b><br>Rutherfordium 1<br>(281)           | 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 105 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 | 106 28<br>Sg 322<br>Seaborgium 12<br>(268) 22 | 107<br>Bh<br>Bohrium<br>(284)              | 108<br>18<br>32<br>32<br>32<br>4<br>Hassium<br>(277)                                                                                                                                   | 2<br>8<br>109<br>12<br>12<br>14<br>2<br>14<br>2<br>14<br>2<br>14<br>2<br>109<br>11<br>1<br>33<br>33<br>109<br>11<br>33<br>11<br>33<br>11<br>11<br>33<br>11<br>11<br>11<br>33<br>11<br>11                                                                                                                                                                        | 2 110<br>Ds<br>Darmstadtium<br>(271)                                                                                                            | <sup>2</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>8</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup><br><sup>10</sup>  | Uub 32<br>Ununbium 2<br>(285)                 | 113<br>Uut<br>Ununtrium<br>(284)<br>18<br>18<br>32<br>32<br>32<br>18<br>32<br>32<br>33<br>18<br>32<br>32<br>32<br>33<br>33<br>33<br>34<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | 114 2<br>Uuq 32<br>Ununquadium 18<br>(289)                       | 115 2<br>Ununpentium 18<br>(288) 22                       | 116<br><b>Uuh</b><br>Ununhexium<br>(292)             | 117<br>Uus<br>Unurseptum                                      | 118<br><b>Uuo</b><br>Ununoctium<br>(294) <sup>2</sup><br>8<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | KLZNORG       |
|                                                                                                 | For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses. |                                           |                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                            |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                               |                                                                                                                                                                                                    |                                                                  |                                                           |                                                      |                                                               |                                                                                                                  |               |
| Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/ |                                                                                                                    |                                           |                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                            |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                               |                                                                                                                                                                                                    |                                                                  |                                                           |                                                      |                                                               |                                                                                                                  |               |
|                                                                                                 | Dto                                                                                                                | bla                                       |                                                       | 57<br>La<br>Lanthanum<br>138.90547                     | 58<br><b>Ce</b><br>Cerium<br>140.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59 28<br>Pr 21<br>Praseodymium 2<br>140.90765 | 60<br><b>Nd</b><br>Neodymium<br>144.242    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                     | 62<br>18<br>23<br>23<br>5<br>23<br>2<br>5<br>23<br>5<br>23<br>5<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                     | 63<br><b>Eu</b><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup> | 64<br>64<br>63<br>64<br>64<br>64<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74<br>74                                                                                                                                                                        | 65 28<br><b>Tb</b> 27<br>Terbium<br>158.92535 | 66 28<br><b>Dy</b> 28<br>182.500                                                                                                                                                                   | 67 2<br>Ho 29<br>Holmium 184.93032                               | 68 28<br>Er 300<br>Erbium 2<br>167.259                    | 69<br><b>Tm</b> <sup>1</sup><br>Thulium<br>168.93421 | 70<br><b>Yb</b><br>Ytterbium<br>173.054                       | 71 2<br>Lu <sup>18</sup><br>Lutetium 2<br>174.9888                                                               |               |
|                                                                                                 |                                                                                                                    | com                                       |                                                       | 89                                                     | 90 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91 <sup>2</sup><br><b>P</b> 2 <sup>16</sup>   | 92                                         | <sup>2</sup> 93                                                                                                                                                                        | <sup>2</sup> 94                                                                                                                                                                                                                                                                                                                                                 | 95<br>Am                                                                                                                                        | <sup>2</sup> 96                                                                                                                                                                                                                                                                       | 97 <sup>2</sup><br>BL <sup>16</sup>           | 98 <sup>2</sup><br>Cf <sup>16</sup>                                                                                                                                                                | 99 <sup>2</sup><br>5 5 <sup>16</sup>                             | 100 <sup>2</sup><br>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 101 3                                                | 102 á                                                         | 103 <sup>2</sup><br>I r <sup>18</sup>                                                                            |               |

Fm

Fermium

(257)

No

(259)

Nobelium

Lr

(262)

Lawrencium

32 31

Md

Mendelevium

32 30

Actinium (227)

Th

Thorium 232.03808

Pa

Protactinium 231.03588

U

Uranium 238.02891

Np

Neptunium (237)

Pu

Plutonium (244)

Cm

Curium (247)

Am

Patrick Dreher

Americium

Bk

(247)

Berkelium

32

32 27 8

## **Bound States of Each Element**

- Each element in the Periodic Table has protons (and neutrons) in a nucleus and an equal number of electrons in bound states surrounding that nucleus
- There are different energy levels (n = 1, 2, 3, ...) that have bound states labelled as S, P, D, F, ...
- The electrons fill these bound states in a specific order
  - S state takes 2 electrons
  - P state takes 6 electrons
  - D state takes 10 electrons

**NC STATE UNIVERSITY** 

### **Order of Filling of Shells**



2/22/2018

# **Picking an Element for a TIQC**

- Choose Calcium in the 2<sup>nd</sup> column of the periodic table
- Calcium (Ca) has atomic number 20 (20 protons in the nucleus and 20 electrons filled in distinct energy bound state shells surrounding the nucleus)
- Interactions mainly occur among electrons in the partially filled outer shells
- Examine the atomic properties of Ca

### Examine the Atomic Structure of a Calcium Atom



### Order of Electron Filling of Energy Levels in Calcium Atom

# Electron Configuration Chart s holds up to 2 p holds up to 6 d holds up to 10 20 Calcium 40.08 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}$

### **Electromagnetic Fields**

# **Electromagnetic Fields**

- Electromagnetic fields
  - Carry energy and angular momentum
  - Interact with electrons in atoms
- Key properties of atoms and electromagnetic fields
- Bound state electrons in an atom will absorb and emit discrete quantities of energy and units of angular momentum
- Electromagnetic fields are a primary source that transfers energy and angular momentum to electrons in the atom

### **Propagation of Electromagnetic Fields**



2/22/2018

#### NC STATE UNIVERSITY

## Transferring Energy to/from Bound State Electrons in an Atom

- The amount of energy that an electron absorbs/emits to change from an initial state to a different state is determined by
  - Difference between the two bound state energy levels
  - The initial and final angular momentum state (S, P, D, F,)
- The total angular momentum of the electron is determined by the combination of both the electron's orbital angular momentum and an "internal" angular momentum called "spin"

# Transferring Energy to/from Bound State Electrons in a Material

- By selecting a specific frequency of electromagnetic radiation it transfers energy and discrete units of angular momentum into an electron
- Results in an electron transitioning from an initial state to a different state
- There are specific "quantum mechanics" rules constraining transitions between energy levels based on the transition energy and change in angular momentum
- Rules are based on an electron's total angular momentum J (sum of orbital angular momentum (L) and internal spin angular momentum (S))
- Rules summarized as "Selection Rules"

### **Selection Rules for Atomic Spectra**

| Electric dipole<br>(allowed)                                                                                                                                |          | Magnetic dipole<br>(forbidden)                                                                                                                    | Electric quadrupole<br>(forbidden)                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (1) $\Delta J = 0, \pm 1$<br>(0 $\pm 0$ )<br>(2) $\Delta M = 0, \pm 1$<br>(3) Parity change<br>(4) One electron ju<br>$\Delta l = \pm 1$<br>For L - S court | Rigorous | $\Delta J = 0, \pm 1$<br>(0 \operatorname 0)<br>$\Delta M = 0, \pm 1$<br>No parity change<br>No electron jump<br>$\Delta l = 0$<br>$\Delta n = 0$ | $\Delta J = 0, \pm 1, \pm 2$<br>(0 \operatornameq 0, \frac{1}{2} \operatornameq \frac{1}{2}, 0 \operatornameq 1)<br>\Delta M = 0, \pm 1, \pm 2<br>No parity change<br>One or no electron jump<br>\Delta l = 0, \pm 2 |  |  |  |
| (5) $\Delta S = 0$<br>(6) $\Delta L = 0, \pm 1$<br>(0 $\leftrightarrow 0$ )                                                                                 | , in B   | $\Delta S = 0$<br>$\Delta L = 0$                                                                                                                  | $\Delta S = 0$<br>$\Delta L = 0, \pm 1, \pm 2$<br>$(0 \leftrightarrow 0, 0 \leftrightarrow 1)$                                                                                                                       |  |  |  |

### **Energy Levels and Transitions in Materials**

- Electrons can change energy states by transitioning among different quantized energy levels
- Electrons absorb and emit discrete quantities of energy and angular momentum when undergoing these transitions



#### **NC STATE UNIVERSITY**

### Focus on the Atomic Spectra of Calcium



### Lasers

## **Electromagnetic Radiation Properties**

• Light is composed of many electromagnetic fields of many different energies (frequencies)



**Incoherent Light** 

 Need light with properties of coherence (light with specific frequency and common phase)



**Coherent Light** 

### Need a Focused Source of Energy - Lasers -

- It would be far more efficient to "dial-up" a specific energy difference that will cause the electron to transition (resonate) between two different energy levels
- Requires a coherent light source tuned to a specific frequency



# Lasers in the Experimental Apparatus

- Electromagnetic radiation from a laser will interact with the electronic structure of these particular atoms
- Laser can
  - Produce electromagnetic radiation across a spectrum of frequencies from infrared through ultraviolet
  - Be tuned to specific electron transition energies
- By varying the polarization, phase, wavelength, and duration of the laser light pulse the behavior of the electron can be controlled
- From a QC perspective this effectively created rotations and transformations of the qubit states

### **Calcium Atom Spectra**



### Consider the States Of <sup>40</sup>Ca Just Below And Above The Fully Filled Shells



Patrick Dreher

# Several Types of <sup>40</sup>Ca Energy Level Transitions That Can be Identified



| Building       | Blocks | for | Quan | tum | Com | puting | - | Part |  |
|----------------|--------|-----|------|-----|-----|--------|---|------|--|
| Patrick Dreher |        |     |      |     |     |        |   |      |  |

## Low Temperature Experimental Apparatus

**NC STATE UNIVERSITY** 

### **IBM Q Cryostat**



#### NC STATE UNIVERSITY

### Requirement for Low Temperature Environment for the Experiment

- At room temperature the electrons are subject to many types of thermal fluctuations
- Above the filled electron shells, there are many unfilled bound states to which the electron can transition (unwanted volunteers)
- Want to suppress this "thermal jitter" so that the transitions between bound and excited states in the <sup>40</sup>Ca atom is minimized

### Minimize The Atomic Transitions in a Material by Cooling the Experimental Apparatus To Almost "Absolute Zero" Temperature



### Cool the Apparatus to Limit the Size of the Hilbert Space Available to the Qubit



| Building       | Blocks | for | Quantum | Co | mputing | - | Part |  |  |  |
|----------------|--------|-----|---------|----|---------|---|------|--|--|--|
| Patrick Dreher |        |     |         |    |         |   |      |  |  |  |

# Removing Unwanted Excited States to Prepare the Ion to Initially Only be in the S<sub>1/2</sub> Ground State

- Depopulate the P<sub>1/2</sub> ←→
   D<sub>3/2</sub> transition that can contaminate the D ←→ S long lived state for a qubit
- Also need to de-populate the D<sub>5/2</sub> state
- Need 2 new lasers (854 nm and 866 nm) to pump electrons to the  $P_{1/2}$  and  $P_{3/2}$  states that can then drain to the  $S_{1/2}$  ground state



# **Building a Long Lived Ion Qubit State**

- Now use another laser tuned to the resonant wavelength of (729 nm) to force an excited state population into the D<sub>5/2</sub> state |e> from the S<sub>1/2</sub> ground state |g>
- From laws of QM this is a forbidden transition and so the excited state will be long lived (~1 sec) compared to the lifetime of an allowed transition (~ 1 nanosecond) → stable qubit
- Now have constructed a long-lived stable qubit



# Toward The Construction of a Trapped Ion Quantum Computer

# **Goal of an Experimental TIQC**

- Goal is to construct an experimental apparatus that can
  - 1. Take 1 qubit inputs and produce outputs that reflect the properties of 1 qubit gates
  - 2. Take 2 qubit inputs and produce outputs that reflect the properties of 2 qubit gates
- Demonstrating an experimental apparatus that satisfies goals 1. and 2. above will form the basis for a universal quantum computer
- This process of building and operating a TIQC universal quantum computer will be described in detail in Lectures IV and V

### Last Slide

2/22/2018