
SAPI:
Solver Application Programming Interface

LANL / D-Wave Quantum Programming

June 9, 2016

D-Wave Systems Inc.

Denny Dahl

© 2016 D-Wave Systems Inc. All Rights Reserved | 2

 Available for C, MATLAB or Python programmers

 Available on Windows, OS X or Linux

 Lowest-level supported interface for interacting with D-Wave 2X

 Provides synchronous and asynchronous QMI execution

 SAPI 2.0 released in 2015 – adds support for post-processing

 Download from Qubist includes language & OS specific packages

containing programmer reference manual & examples

 Current revision level of SAPI is 2.2

 Anticipate SAPI 2.3 in spring 2016

SAPI Overview

© 2016 D-Wave Systems Inc. All Rights Reserved | 3

• Local & remote connections

•Access to available solvers

•Accessors to examine solver properties

•QMI creation data structures

•QMI visualization

•QMI execution

Basic SAPI functionality

© 2016 D-Wave Systems Inc. All Rights Reserved | 4

•Asynchronous execution

•Embedding

•Order reduction

•Spin reversal transforms

•Post-processing

• Ising/QUBO translation

Advanced SAPI functionality

© 2016 D-Wave Systems Inc. All Rights Reserved | 5

Local versus remote connection

client system

user
program

SAPI
package

C4 sim

client system

user
program

SAPI
package

C4 sim

Qubist server

QPU

DW2X

C4 sim

Local Remote: token required!

© 2016 D-Wave Systems Inc. All Rights Reserved | 6

Property Description

supported_problem_types QUBO or Ising

num_qubits Total number of qubits, both working and
non-working, in the QPU

qubits List of qubit indices of working qubits

couplers List of working couplers, represented as
pairs of qubit indices

Solver properties

© 2016 D-Wave Systems Inc. All Rights Reserved | 7

Parameter Description

num_reads A positive integer that indicates the
number of samples (output solutions) to
read from the solver

answer_mode Return a histogram of answers sorted in
order of energy (‘histogram’) or return all
answers individually in the order they
were read (‘raw’)

max_answers Maximum number of answers returned
from the solver in histogram mode

Solving parameters for all solvers

© 2016 D-Wave Systems Inc. All Rights Reserved | 8

Parameter Description

auto_scale Multiply all weights and strengths by an
overall scalar to maximally fill range
(enabled by default)

annealing_time Duration in microseconds of annealing
time (20 usec default)

beta Inverse temperature of Boltzmann
distribution in post-processing

chains Lists of qubits that represent the same
logical variable in post-processing

Solving parameters specific to QPU

© 2016 D-Wave Systems Inc. All Rights Reserved | 9

Parameter Description

num_spin_reversal_transforms Do (1) or do not (0) apply spin-reversal
transforms

postprocess Either empty string, “sampling”, or
“optimization”

programming_thermalization Duration in microseconds of post-
programming cool-down interval

readout_thermalization Duration in microseconds of post read-out
cool-down interval

Solving parameters: QPU (cont.)

© 2016 D-Wave Systems Inc. All Rights Reserved | 10

SAPI initialization & clean-up

C sapi_globalInit()
sapi_globalCleanup()

MATLAB NONE

Python NONE

The C SAPI library maintains some
internal global state that you must

initialize and clean up.

© 2016 D-Wave Systems Inc. All Rights Reserved | 11

Connections

C sapi_localConnection(…)
sapi_remoteConnection(…)

MATLAB sapiLocalConnection(…)
sapiRemoteConnection(…)

Python local_connection
RemoteConnection

SAPI uses different function calls for local and remote
connections

© 2016 D-Wave Systems Inc. All Rights Reserved | 12

Solvers

C sapi_listSolvers(…)
sapi_getSolver(…)

MATLAB sapiListSolvers(…)
sapiSolver(…)

Python *.solver_names
*.get_solver

• Quantum hardware typically supports a single solver
• Software simulators typically implement several

solvers

© 2016 D-Wave Systems Inc. All Rights Reserved | 13

Properties

C sapi_solverProperties(…)

MATLAB sapiSolverProperties(…)

Python *.supported_problem_types
.

© 2016 D-Wave Systems Inc. All Rights Reserved | 14

QMI data structure

C sapi_Problem

MATLAB Ising: h,J
QUBO: Q

Python Ising: h,J
QUBO: Q

© 2016 D-Wave Systems Inc. All Rights Reserved | 15

• Foo

QMI execution

C sapi_solveIsing(…)
sapi_solveQUBO(…)
sapi_asyncSolveIsing(…)
sapi_asyncSolveQubo(…)

MATLAB sapiSolveIsing(…)
sapiSolveQubo(…)
sapiAsyncSolveIsing(…)
sapiAsyncSolveQubo(…)

Python solve_ising
solve_qubo
async_solve_ising
async_solve_qubo

© 2016 D-Wave Systems Inc. All Rights Reserved | 16

Solutions

C sapi_IsingResult

MATLAB answer = sapi*Solve*

Python answer = sapi_*

© 2016 D-Wave Systems Inc. All Rights Reserved | 17

SAPI example: frustrated system

aligned

We know how to make aligned and anti-aligned chains.
Combine these two chain types to build a frustrated system.

aligned aligned

anti-aligned

𝒒𝟐

𝒒𝟒

𝒒𝟑

𝒒𝟏

𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒

0 0 0 0

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

© 2016 D-Wave Systems Inc. All Rights Reserved | 18

QUBOs for individual constraints

𝒒𝟏 𝒒𝟐 𝒒𝟏 + 𝒒𝟐 − 𝟐𝒒𝟏𝒒𝟐

0 0 0

0 1 1

1 0 1

1 1 0

𝒒𝟐 𝒒𝟑 𝒒𝟐 + 𝒒𝟑 − 𝟐𝒒𝟐𝒒𝟑

0 0 0

0 1 1

1 0 1

1 1 0

𝒒𝟑 𝒒𝟒 𝒒𝟑 + 𝒒𝟒 − 𝟐𝒒𝟑𝒒𝟒

0 0 0

0 1 1

1 0 1

1 1 0

𝒒𝟒 𝒒𝟏 −𝒒𝟒 − 𝒒𝟏 + 𝟐𝒒𝟒𝒒𝟏

0 0 0

0 1 −1

1 0 −1

1 1 0

aligned

anti-aligned aligned

aligned

© 2016 D-Wave Systems Inc. All Rights Reserved | 19

Aggregate QUBO

1. Confirm that the QUBO
represented here is the sum
of the individual QUBOs
from the last slide.

2. Input the QUBO below into
Quantum Apprentice on the
Four Qubits tab.

3. Confirm that you get the
desired set of states.

0

𝒒𝟐

𝒒𝟒

𝒒𝟑

𝒒𝟏

−2

−2

2

0

2 2

−2

𝑂𝑏𝑗 = 2𝑞2 + 2𝑞3 − 2𝑞1𝑞2 − 2𝑞2𝑞3 − 2𝑞3𝑞4 + 2𝑞4𝑞1

© 2016 D-Wave Systems Inc. All Rights Reserved | 20

Warm-up with C program

1. On Darwin, navigate to the sapi directory:
/home/ddahl> cd sapi

2. Read the README file (using emacs, vi or …)

3. Look at the C program eq.c and note lines 230-233

4. Compile, link and run eq.c as follows (or use build.bash):

> gcc –I $DWAVE_HOME –c eq.c

> gcc –L $DWAVE_HOME –l dwave_sapi eq.o -o eq

> eq

5. Change num_reads in eq.c to 1000 and repeat step 4.

© 2016 D-Wave Systems Inc. All Rights Reserved | 21

Embed QUBO to unit cell

0

𝒒𝟐

𝒒𝟒

𝒒𝟑

𝒒𝟏

−2

−2

2

0

2 2

−2

𝑞1 ⇒ 𝑄0000
𝑞2 ⇒ 𝑄0004
𝑞3 ⇒ 𝑄0001
𝑞4 ⇒ 𝑄0005

𝑄0000

𝑄0001

𝑄0005

𝑄0004

© 2016 D-Wave Systems Inc. All Rights Reserved | 22

Run kink.c on the local simulator

1. Copy eq.c to kink.c

/home/ddahl/sapi> cp eq.c kink.c

2. Edit lines initializing DW_weight and DW_strength to
reflect the embedded logical problem. To determine
the correct indices for the DW_strength array, click on
the couplers in Quantum Apprentice on the Chimera
tab and note the coupler label in the name box.

3. Compile, link and run kink.c
 > gcc –I $DWAVE_HOME –c kink.c
> gcc –L $DWAVE_HOME –l dwave_sapi kink.o -o kink

> kink

4. Did you see all eight valid answers? What fraction of
your samples were invalid? How even was the
distribution of samples across the valid answers?

© 2016 D-Wave Systems Inc. All Rights Reserved | 23

Run dw2x.c on DW2x_SYS4

1. Look at the C program dw2x.c and edit lines 238-241

2. Insert API token into line 239. Token can be found on
line 2 of file ~/.dwrc following the comma

3. Compile, link and run dw2x.c
> gcc –I $DWAVE_HOME –c dw2x.c

> gcc –L $DWAVE_HOME –l dwave_sapi dw2x.o -o dw2x

> dw2x

4. Edit lines 230-233 dw2x.c to include the kink QUBO and
increase the number of reads to 1000. Repeat step 3.

5. What went wrong? Fix the problem & re-run. Answer the
same questions from (4.) on the prior slide.

© 2016 D-Wave Systems Inc. All Rights Reserved | 24

Summary

• Roughly equivalent functionality is available from all

three SAPI interfaces

• Programmer convenience is a reasonable criteria to use

in choosing one of these interfaces, but keep in mind:

• Working at this level gives the user the most control...

• ...and provides the least support for mapping high level

problems to the system

