D::\WaUC

The Quantum Computing Company™

Driving to the 48 USA State
Capitals:
Programming the D-Wave QPU

North Carolina State _:._:-:' .
Joel M. Gottlieb s O

February 6, 2018 S

D:\Waulk

The Quantum Computing Company™

Copyright © D-Wave Systems Inc.

QUBIT Quantum bit which participates in annealing cycle and settles into
one of two possible final states:
COUPLER Physical device that allows one qubit to influence another qubit
WEIGHT Real-valued constant associated with each qubit, which influences
the qubit’s tendency to collapse into its two possible final states;
controlled by the programmer
STRENGTH Real-valued constant associated with each coupler, which controls
the influence exerted by one qubit on another; controlled by the
programmer
OBJECTIVE Real-valued function which is minimized during the annealing cycle

Obj(a; bij; q;) = Z a;q; + Z biiqi q;
i

i

The system samples from the g; that minimize the objective

D:\Wauvulk

The Quantum Computing Company

Review: The overall process

* Need to map problems into binary variables

Need to map the binary variable expressions into linear terms and
pair quadratic terms
— QUBO: Quadratic Unconstrained Binary Optimization

Run the QUBO on the D-Wave QPU

Interpret the results

Revisit the mapping...

LR
.
The Quantum Computing Company

B T
QUBOs can be found in many fields

* Optimization
— Recent: financial portfolio management

— Recent: hospital re-admission statistics (Medicare funding)
— Recent: bioinformatics / Multiple Sequence Alignment

— Recent: nuclear power plant failure scenario analysis

— Mathematical problems like Minimum Vertex Cover

— Job-shop scheduling, other graph problems (Map Coloring,
vertex set color)

* Sampling (from probability distribution)

LR
.
The Quantum Computing Company

Application example flow

Start with
binary
variables in
problem
domain

Copyright © D-Wave Systems Inc.

Convert to
019]:]0)

. Solve QUBO

with gbsolv

Convert bit
vector back
to variables
in problem
domain

Interpret
gbsolv
results and
adjust
accordingly

D:\Wauvuk

The Quantum Computing Company™

D:\Waulk

The Quantum Computing Company™

Copyright © D-Wave Systems Inc.

The need for gbsolv

* Many problems require many more qubits or
couplers than are available with the current chip.

* Examples:

— Portfolio Optimization example requires 63-variable
complete graph, but 2000Q does not go beyond ~50-qubit
complete graph with direct embedding

— 48-city Traveling Salesman requires complete graph, and it
might be possible on the 2000Q, but the needed embedding
would have very long chains, which do not perform well

— Traffic flow optimization example using 418 cars (with 3
routes each) require almost 2000 highly-connected
variables, too many to fit directly on the 2000Q chip.

El— @ ST
qbsolv

* Hybrid quantum/classical QUBO solver (tabu = classical heuristic
solver)

* Designed for problems too large and/or too dense to run on D-
Wave quantum computer

* Divides problems into chunks, and iterates on sub-QUBOs (similar
to HFS algorithm)

* Open-source: https://github.com/dwavesystems/qbsolv

e Can be used standalone, or with 128-qubit simulator, or with QPU

* Produces a single bitstring solution representing the final states of
all the binary variables

LR
.
The Quantum Computing Company

HEESSE—— ST
Motivating Algorithm

* "A Multilevel Algorithm for Large Unconstrained Binary
Quadratic Optimization", Wang, Lu, Glover, and Hao [2012]

* Principles

— ldentify the backbone of the QUBO,; i.e., the variable settings that are
correlated for all valid answers, or, contribute the most to a local
optimum

— Select subQUBOs by most/least impact of each variable in determining
the optimum

— Solve the subQUBOs with a solver known to run effectively at smaller
scale

— Propagate subQUBO answer out to original variables in full QUBO

— lterate above steps until no further improvement

How gbsolv works

* Hybrid algorithm:

— Identify the significant rows and columns of the larger
problem (What changes a lot with spin flips? What
doesn’t?)

— Create a smaller representative QUBO of that subset

— Execute that smaller QUBO on the D-Wave system (pre-
computed embedding, speeds up run-time)

— Use the answer to guide the larger solver (new starting
point, closer to the minimum)

El— @ ST
Example gbsolv Output

$ gbsolv -i bgp50.qubol.qubo

50 Number of bits in solution
10111111101001111101001101011111101111111110110110
-5176.00000 Energy of solution

0O Number of Partitioned calls

0.21352 seconds of classic cpu time

R‘:WBUE

he Quantum Computing Company

D:\Waulk

The Quantum Computing Company™

Copyright © D-Wave Systems Inc.

7-city Traveling Salesman Problem

* Alearning exercise

 We will explore:
1. QUBO for leg variables
2. City visit constraints
3. Embedding and chain constraints

4. Importance of parameters and problem
construction

Problem Specifications

Optimization:

Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

Given a length L, decide whether the list of cities and
distances has any tour shorter than L.

 Symmetric TSP; Undirected graph, distances in miles;
distances obtained from various Web sites.

S 2 s
The Cities

A = Albuquerque, NM
B = Boston, MA

C = Charlotte, NC

D = Detroit, Ml

E = Evanston, IL

F = Frankfort, KY

G = Gulfport, MS

(Distances found in file tsp7.b)

Example path:
Path = (A->B) + (B->C) + (C->D) + (D->E) + (E->F) + (F->G) + (G->A)

LR
.
The Quantum Computing Company™

Map of Alphabetical Order Path

WA M

__NTANA Quebgc City

MINNESOTA
Ottawa Morgreal
Minneapolis £
o : MAIN
SOUTH WISCONSIN
DAKOTA VERMONT
Toronto
[
MICHIGAN & s
WYOMING T V0 Ry HAMP E
=") y MASSACHNSETTS
IOWA ‘ ‘ -
NEBRASKA g RI
l" v
N 4 PENNSYLVANIA NeWgyork
Denver _ ILLINOIS/ ! INRIANA oo Philadelphia
o United States e Ny
Kans%s City __~Indianapolj MARYLAND
> o @ DE
COLORADO i WEST
KANSAS | ¥ VIRGINIA Wa?hlngton
% i
KENTUCKY)~ VIRGINIAK
il W ﬁ_/;-- d>://|
g i Nasg(;ine >
oK1 AbofiA © _~TENNESSEE #NORTH
u—%f’" Mg : ':\ @CAROL'NA
, ARKANSAS ¢ |[‘ d Charlotte
NEW MEXICO g t Atlanta SOUTH
: 3 o CAROLINA
Daiias '
i GEORGIA
El Paso
TEXAS
Austin Jacksonville
i © Houston 3 9
CHIHUAHUS San Agtomo o New Orleans
Orl%ndo 8
)
COAHUILA eina i
FLORIDA

D:\Wauvulk

The Quantum Computing Company

El— @ ST
QUBO: Leg Variables

Binary Variable ab:
1 if the trip includes the segment A -> B
0 if the trip does not include A->B

Distances between cities A and B denoted by Dab

Distance to Minimize:
Dab * ab + Dac * ac + Dad * ad + ... + fg * Dfg

How do we convert this into a QUBQO?

LR
.
The Quantum Computing Company™

El— @ ST
Converting into a QUBO

Each city must be visited exactly twice — once arriving, and
once departing.

For city A, we must have:
ab+ac+ad+ae+af+ag—-2=0
For City B,
ab+bc+bd+be+bf+bg—2=0
And so on, up to city G.

The QUBO to minimize:

Dab * ab + Dac * ac + Dad *ad + ... + fg * Dfg + y((ab+ac+ad+...-
2)**2 + (ab + bc + bd + be + bf + bg —2)**2 + ...)

LR
.
The Quantum Computing Company™

Algebraic results: expanding the equation

* Groups of terms of the form:
- 3 * vertex * ab: favor visiting the path A->B

* Groups of terms of the form:

2 * vertex * ab * ag: penalize visiting the paths A->B and A->G
(some of these will be selected)

* There are seven explicit dw assert statements (which help
identify valid solutions):

assert:vertex:ab + ac + ad + ae + af + ag — 2

* vertex is a Lagrangian multiplier; needs to be weighed
against the inter-city distances

LR
D .
The Quantum Computing Company

HEESSE—— ST
Steps to run the 7-city TSP (write a run

script)
* Prepared tsp7.b (parameter file) and tsp7.q (QUBO file) by hand

* Embed the problem onto the 128-qubit simulator using the dw
embed command (the default embedder algorithm tries to find
a way to map the needed logical qubits onto available physical
qubits)

* Try a value of vertex and a value of param_chain, another
adjustable parameter (controls the chain strength in the
embedding)

* Run dw bind to bind the parameter values in the B file to the
QUBO

* Run dw exec to run the problem on the simulator (or QPU)

* Run dw val to interpret and validate the output

LR
.
The Quantum Computing Company

Parameter explorations

* Earlier, we mentioned vertex and param chain, the adjustable
parameters

* Vertex controls the strength of obeying the constraints
* Param_chain controls the strength of chains in the embedding

* When running the problem, parameter space must be explored,
to find largest possible number of solutions

1300 1400 1500

4500
4750
5000

.
D:\WauUl2
.
The Quantum Computing Company

Looking at the lowest-energy solution

* dw val =s 1 tsp7.sol produces output that looks like this:

*%%% GOLUTION 1 ****
ab<==0

af <==

ag<==1

bC <==

VALID: Y
SAMPLES: 4
OBJECTIVE: -33778.00

And we get the path:
af + ef + de + bd + bc + cg + ag
a>f>e->d->b->c->g->a

LR
.
The Quantum Computing Company™

A map of the lowest-energy solution

NORTH
DAKOTA Québec City L
MONTANA & —
MINNESOTA
Ottawa Montreal
Minneapolis ® =
SOUTH WISCONSIN
DAKOTA VERMONT
Toronto
MICHIGAN & A
o > R |
WYOMING o e T T Ry, HAMP QEERE
Chilago ge MASSACHSSETTS
IOWA GO g .
NEBRASKA ! gr 7RI
& PENNSYLVANIA Newyerk
Degver United States ILLINOIS IND%ANA OHIO Ph"?,dc%fj"a
Kansas City Indiangpolj MARYLAND,
ITAH jo! i @{r DE
COLORADO KANSAS awyLs V|vr\z’fEsfrI|A Wasﬁﬁington
> -.-‘.
KENTUCKY VIRGINIAN
ﬁ*-/
’ g Nashville : >
e : /*'No'r'i‘f;H
OKL AHOTA TENNESSEE :
,ﬁjfﬁ"”l'“‘“' _=¢ CAROLINA
el
3 ARKANSAS g Charlotte
x[eznci)xNA NEW MEXICO i Atlapta SOUTH
o ' MISSISSIPPI 7 EARCEINA
Qa.{!)lgs z Al ADARMA g*;!/fj
Tucson T SEEEC 2 GEORGIA
b El Paso W\ r .
TEXAS e]
N k Il
i P Jacksonville
SONORA aligtin LoUTETIAS, L
. Houston S
CHIHUAHU San Agtonlo o New Orcons
Orl%ndo
% COAHUILA lampa
O
> . FLORIDA
o
. NUEVO LEON

D:\Wauvulk

The Quantum Computing Company

Interpreting the energy

The path: af + ef + de + bd + bc + cg + ag
Adding up the miles: 5422 miles
dw tells us the energy is -33778

For each vertex, there will be two nonzero terms of the form:
-3 * vertex * af = -3 * vertex
And one term of the form:

2 *vertex * af *ag =2 * vertex

Thus: -4 * vertex per 7 cities => -28 * vertex
Energy = Total Mileage — 28 * vertex

(for vertex = 1400, this equality works)
=ML

An interesting issue

A valid solution and different path:
ae ag bc bd cf df eg

Notice: A->E->G->A
This is called a subloop: the path split into a 3-loop and a 4-loop

— Subloops are not prevented by “visit twice” constraint

— Subloops are not desirable solutions; we would have to write many more
constraints to eliminate them

* The Lucas formulation (Permutation matrix) rules out subloops
(next section)

LR
.
The Quantum Computing Company™

Conclusions from 7-city TSP

* dw can be used as part of overall toolbox, start to finish

e Good problem for exploring Lagrangian parameters,
understanding solutions, how QUBO construction affects
solutions (subloop problem).

* Good problem for understanding chains and embedding

* Has quick physical interpretation of solution

* Good problem for understanding what the QPU does, what its
inputs are, and what it returns

LR
.
The Quantum Computing Company

D:\Waulk

The Quantum Computing Company™

Copyright © D-Wave Systems Inc.

48-city Problem Specifications

Symmetric TSP; undirected graph; distances in miles

Driving distances obtained from Google Maps

We can reduce the complexity of the problem by 1- assume last
city visited is alphabetically last city (Cheyenne, WY)

Andrew Lucas paper: https://arxiv.org/pdf/1302.5843.pdf

LR
.
The Quantum Computing Company™

First approach: QUBO (ref. Andrew Lucas)

QUBO approach means building a permutation matrix of 0’s and
1’s and then introducing quadratic terms to include distances:

First stop

Cityl ——

CityN ——

|
‘F 0

Last stop

|

=i

Tour represented: ccity 4= city 2= city 1= city 6= city 3 =city 53
—

LR
.
The Quantum Computing Company™

B T
QUBO (continued)

For each row and column, we introduce a constraint via the
following QUBO termes:

7

< Forrow 1l

Constraint=A

: N
_1"'2 X1
=
hf

_1"'2 Xi1

J=1

12

<— Forcolumn 1

Constraint=A

Distance from the first city visited to the second city visited is

computed like this:
N N

Distance=B Z Z di,jxi.l Xj, < From1*to 2" city
= j:I

LR
D .
The Quantum Computing Company

Algebraic results

* QUBO approach requires boolean variables to encode a tour, but
“last city visited” assumption provides reduction

e Constant term (2N-2)A: one for each row + column, reduced

* Each variable gets a term -2A multiplied by it (e.g. -2A) to
incentivize visiting it on a particular step (e.g., city 1, step i)

* Pairwise terms penalize cities being visited twice, or visited on
same step (e.g. 2A or 2A)

* Distance terms penalize following an edge between two cities (the
distance term raises the overall energy) (e.g. B)

e ”Last city visited” assumption leads to diagonal terms B and B (last
and first have to get to Cheyenne)

LR
.
The Quantum Computing Company

HElSE—— ST
Python program generate _qubo.py

 Number of cities N is input, cannot go beyond 48, but easy to
extend

* Divided through by B, so that there is only one adjustable
parameter A

* Read in the inter-city distances from state_capitals.txt, and create
distance matrix

* Diagonal terms will be -2A, except when we need to include “last
city visited” reduction effect

* gbsolv requires off-diagonal terms to have i < j
* Use QUBO _details library to write QUBO

El— @ ST
Looking at the 48-city QUBO

* For N =48, with the reduction, (N-1)*2 Boolean variables (2209)
* Aset to 8500 (required: larger than biggest inter-city distance)

* Most of the diagonals are -17000 (-2 * A), but some have the
distance added in, to the last city (“How far from here to
Cheyenne?”)

* Many of the off-diagonal terms are 17000 (2 * A) as well

* The last off-diagonal term is (2207,2208), as we expect

LR
.
The Quantum Computing Company

Python program interpret_lucas.py

* Read in the inter-city distances from state_capitals.txt,
and create distance matrix

 Read in the names of the cities
* Read in the gbsolv output

* Associate the result bitstring with binary variables to
compute the city tour

e QOutput a city tour for eventual drawing on Google Maps
* Useful for debugging QUBO/energy

.
D:\Waulk2
.
The Quantum Computing Company

Python program generate_map.py

Read in the city tour from the previous step

Read in an HTML template for generating Google USA map

Insert the city tour into the HTML template

Write out an HTML page which can be displayed, containing the
Google map of the route!

Uswaule
.
The Quantum Computing Company

The solution — meh

‘ o}
-
ria
ttle
o TH
WASHINGTON DYROTA
i MONTANA e
h A
MINNESOTA
Dl i g T g~ : N Sy Ottawa Montreal
1 ‘1 Mifinelfbolis 3 1 INE
i = F——
4 & , SOWTH "WWISCONSIN
ﬂ \] b DAROTA g
€| f OREGON | n Toronmo
i N f
i WYOMING s NEW YORK
P
- Chicago SETTS
] 1A ¢ &
¥ NEBRASKA g RI
ﬁ’ N l‘ pENNSVL@«uA
r
Delér R
NEVADA =,
@ ? Umted States MARY
UTAH . .
Sack ento’ i S —
COLORADO KANS AR 3 GINTA ngton
= San Frgnmsco " Y
]
o | VIRGINIA
San Jose 1
CALIFORNIA L& Vegas ! 4
' . pyn e G b A
\ ’ W |
3 OKL KHOMLL*Q pry SFENNESSEE - Ak
Los Angeles ! ARKASHS é“é!‘g@m
39 N el NEW MEXICO \ Atlghtd” UTH
Phdgnix ﬁi SSIPB @A ROL INA
San Diego Dallas
Q | & A GEDRGIA
El Paso \H il
TEXAS
Hee i Jacksonvill
CALIFORNIA Augitin % acksonville
SONORA y Housmw_&ﬁwms: WA o
ST San AQtonlo e 4o New Orleans
Orlaondo -
= COAHUILA flampa o
o,
o FLORIDA
2 -+
3. NUEVO LEQN D .
% Monterrey Mlgml -
BAJA y Gulf of
Caiela BAY, SINALOA njipancn Mexica Tha

D:\Wauvulk

The Quantum Computing Company™

A possible “Optimal solution” from Randal
Olson

* Randal Olson from the University of Pennsylvania wanted to drive
all 48 state capitol buildings

* Genetic algorithm

* Olson’s Web page indicates his route is 13,310 miles, but he
focuses on state capitol buildings

* http://www.randalolson.com/2016/06/05/computing-optimal-
road-trips-on-a-limited-budget/

LR
.
The Quantum Computing Company

Randal Olson’s solution

way better

WYOMING

NEBRASKA ?m’;‘

@er United States

MINNESOTA

Minneypolis

~ "\WISCONSIN

Toronto
AN 2

Detroit

ﬁ
ANA

ILLNEO 1S IN
U)¢ NEVADA : = e N pemmrta
o \ ns%s City Indlanapol 'y ; &
L i
sacideatol COLORA”I“DO 3 @ ?EST Wa@ington
San Frgncisco MISSOURI VMRGINIA
o Y 4 KENTUCKY VIRGINIAR
San Jose
CALIFORNIA Las \éegas | Nasyville
TENNESSEE CARGUINA
\ TR C»@mte f
Los Angeles } \
i § Atlghta SOUTH
i e #EAROLINA
San Diego Dallas
Q N \ GEORGIA
!),
BAJA T # | ,
CALIFORNIA P Jacksonville
SONORA o Houston LOUISI =y o
. o
CHIHUAHURA San Agtomo 2 New Orleans
Orlando 18\
o) (o]
% COAHUILA Leripa
O
-3 FLORIDA +
3. NUEVO LEQON

D:\Wauvulk

The Quantum Computing Company™

HESSE—— ST
Insights

 Why didn’t we get the better solution?

* Notice that the difference between “good” and “bad” solutions
is less than 1% of the overall energy — why is this?

* Some problems are mathematically not great for the D-Wave

* Only N-1=47 1’s can be turned on; the gbsolv algorithms are
more effective with larger numbers of bitflips (I need to try this
the other way)

* For your problems, focus initially on special cases which can be
intuitively understood (TSP with 4 cities, etc.)

* Use post-gbsolv code to test solutions for consistency (for
example, introduce additional parameters and establish that the
solutions don’t change)

LR
.
The Quantum Computing Company

D:\Waulk

The Quantum Computing Company™

Copyright © D-Wave Systems Inc.

Summary

* Hybrid classical/quantum approach to using D-Wave

* “Toolbox” approach: Python, dw, gbsolv, simulator, (hardware)
* Problem has understandable graphical representation

* “This problem is not particularly large, but hard.”

* The goal: you can formulate your client’s problems into QUBO and
then run them, even if solutions are not immediately optimal

* The post-gbsolv code is vital for at least three reasons:
— Interpreting the bitstrings and understanding the solutions

— Debugging the math of converting the problem to QUBO
— Debugging the code representing the QUBO

LR
.
The Quantum Computing Company

