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Scientific Applications of Quantum Computing

• Algorithms within the quantum computing model 
are found to take fewer steps to solve key problems

• Factoring

• Unstructured Search

• Eigensystems

• Linear Systems

• Several physical domains motivate quantum 
computing as a paradigm for scientific computing

• High-energy Physics

• Materials Science

• Chemistry

• Biological Systems

A complexity hierarchy hypothesis

?

The relationship of BQP to other relevant classes is 

still largely uncertain.

• P  BPP  BQP 

• Is BPP = BQP?

• Quantum Simulation

• Partition Functions

• Discrete Optimization

• Machine Learning

• Artificial Intelligence

• Data Analytics

• Planning and Routing

• Verification and Validation • Does BQP intersect NP?

• Does BQP intersect NP-Hard?
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Current Quantum Processing Units

• QPU’s are devices that implement the principles 
of digital quantum computing

– Many different technologies demonstrated

– Small-scale registers (1-50)

– Very high 1-qubit gate fidelities (0.999+)

– Moderately high 2-qubit gate fidelities (0.99+)

– Limited connectivity, addressability

– Sequences of operations demonstrated

– Small-scale applications

• Early stage vendors are offering QPU access

– D-Wave, IBM, IonQ, Google, Rigetti, etc.

– Client-server interaction model

– Very loose integration with modern computing

Superconducting chip 

from D-Wave Systems

Superconducting 

chip from IBM

Linear optical chip from 

Univ. Bristol/QET Labs

Superconducting chip 

from Rigetti

Ion trap chip from 

Sandia

Superconducting chip 

from Google
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Modern Scientific Computing

• State-of-the-art scientific computing is 
dominated by massively parallel processing 

– Support large-scale linear algebra and pde problems 
for complex, multi-scale models

– Application codes are parallelized and capable of 
utilizing distributed resources

– Constrained by programming complexity, memory 
latency, and power consumption

Titan HPC system composed from 18,688 nodes 

with a peak performance of 18 petaflops 

Summit HPC system is designed to have a peak 

performance of 200 petaflops 

System Rmax(PF) Memory (TiB) Power (MW)

TaihuLight 93.0 1,310 15.4

Tianhe-2 33.8 1,375 17.8

Piz Daint 19.6 340 2.2

Gyoukou 19.1 575 7.9

Titan 17.6 710 8.2

Top 5 HPC systems ranked by LINPACK benchmark (Nov 2017)
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Quantum-accelerated High-Performance Computing

• We are addressing development of 
quantum computing co-design 

– We are testing and tuning new 
programming and execution models

– We are benchmarking against physical, 
computational, and scientific metrics

• Are QPUs compatible with modern 
computing?

– When do QPU’s accelerate applications 
relative to state of the art HPC?

– What are the behavioral and functional 
requirements placed on the processor?

Integration of existing QPUs faces engineering barriers

Computer node with interconnect for Titan architecture
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What is the architecture of these systems?

• There are several possible architectures for an HPC 
system with QPUs

– Abstract machine models explore design 
alternatives, basis for performance expectations

– The models are differentiated by how the quantum 
processing is partitioned

– The architecture impacts the programming model, 
domain decomposition driven by algorithms

• Architecture choices impact computational power

– Hilbert space for n nodes with q-qubit registers

– Communication costs for size mq messages

n2q  vs. 2nq

mqn vs. mqn
2

Shared Memory Machine

QPU

Node

QPUQPU

Node Node

QPU

Interconnect

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect
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Quantum Accelerator Node Model

• A node may be composed from CPUs  GPUs, and 
memory hierarchies as well as QPUs.

• The quantum processing unit (QPU) encompasses 
methods for parsing and executing quantum programs.

• The quantum control unit (QCU) parses instruction 
sent by the CPU.

• A quantum execution unit (QEU) applies fields to 
initiate gates. There may be multiple QEU’s.

• Applied fields drive changes in the quantum register. 
The register state stores the value of the computation.

• I/O is based on fields to prepare and measure the 
register in computational basis states.

• Network interfaces for the conventional (NIC) and 
quantum (QNIC) interconnects support communication 

Node

QPU

REG

QCU

QEU

CPU

MEM

GPU

NIC
QNIC



8 T. S. Humble

QPU Execution Model

• A typical interaction sequence between node components 
illustrates the language hierarchy for program execution

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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Domain Specific Languages for QPUs

• QPU’s require unique language considerations 

– Rigorous constraints on logical primitives

• No cloning prohibits memcpy, = sign

• Pure functions avoid entanglement side effects

– Non-local communication primitives

• Teleportation uses pre-allocated resources

– Syntax varies with QPU operational models

• Many existing quantum programming language (QPLs) 
largely address these concerns

– Embedded domain specific languages (DSL); Quipper
(Haskell), Scaffold (C), LiQui|> (F#), ProjectQ (python)

– All require expert knowledge of quantum computing and 
they do not integrate with existing workflows

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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Accelerator Programming Framework 

• We are developing an OpenCL-like approach to QPU 
programming called XACC

– User picks the host language and defines a ‘kernel’ 
within a DSL tailored to the available QPU

– Example: Host C/C++ program using Scaffold kernel to 
run on Rigetti QPU 

• XACC links and manages QPU resources

– Programming directives to manage QPU usage

– Compilation mechanisms to support device-specific 
concerns, based off llvm

• There are several key benefits to the user

– Maintain existing application codes

– Employ host language and tools, e.g., C, Fortran

– Easily switch between accelerator languages, SDKs

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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Programming Quantum Accelerators

• XACC: https://github.com/ornl-qci/xacc

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy



12 T. S. Humble

VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe
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VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe
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VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe
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VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe



16 T. S. Humble

VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe
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VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe
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VQE example code using XACC

TNQVM accelerator, Tensor network (MPS) numerical simulator

https://github.com/ORNL-QCI/tnqvm
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VQE example code using XACC

TNQVM accelerator, Tensor network (MPS) numerical simulator

https://github.com/ORNL-QCI/tnqvm
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Executing the Compiled Program

• In principle, programming models translate DSLs into 
executable instructions

– (All?) Existing QPL’s create interpreted representations

– Actual QPU scheduling based on interpreters

• We are developing virtual machine representations for 
interpreters and numerical simulators

– Virtual machine paradigm uses hardware abstraction 
layer to manage different QPU devices

• Current API’s for IBM, Rigetti, and D-Wave

– VM also offers interaction with numerical simulator

• Currently using quantum state simulation

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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How does a host OS manage a QPU?

• Current QPUs are very loosely integrated with 

the host system, e.g., client-server interactions

– This is driven by infrastructure constraints

• The host run-time system must accommodate 

the QPU device and the programming model

– The run-time system is responsible for managing 

resources, errors, permissions

– Instructions must be issued to the QCU via 

memory managed by the OS

– Some program control statements require 

measurement feedback for evaluation

– This evaluation may be caught closer to QEU 

given additional synchronization

Programming 
Model

Execution 
Model Hardware Abstraction 

Layer

OS

QPU

Application Framework

System Libraries

Scheduler

CPU MEM
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The ISA provides an interface for the QPU

• The logic supported by QPUs is under negotiation

– QASM is a popular pseudo-code, but it has lacked a 
complete definition for 20 years

– Recent specifications try to fill this gap for gate model 

• RISC vs CISC ISA designs impact performance

– Example: how should we initialize the register?

– Britt and Humble, “Instruction Set Architectures for 
Quantum Processing Units,” arXiv:1707.06202

• We are developing software to analyze instruction 
and evaluate tradeoffs

– Parser, lexer, and listener for walking source files

– We are adding technology constraints, e.g., register 
size, connectivity limitations

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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QPU Programming depends on device ISA

• IBM has released a written spec for their variant 
of QASM

– https://github.com/IBM/qiskit-openqasm

– Not a complete language spec (embedded)

• Rigetti has a complete language specification

– A Practical Quantum Instruction Set Architecture, 
arxiv:1608.03355

ANTRL4 grammar specification for Open QASM



25 T. S. Humble

Instructions trigger machine opcodes

• Opcodes trigger the execution units to apply fields

– These are dependent on microarchitecture, QEC 
specifications, and device parameters

– The implementation is tied to how we use quantum 
execution units

• Ensuring fault-tolerant operation requires additional gates 
and registers

– Quantum error correction codes redundantly encode state 
information

– Syndrome measurements query if the state lies outside the 
codespace

– Correction operations return state to the correct codespace

– QEU scope differs these concerns to device maker

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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Implementing FTQEC operations

• Opcode scheduling becomes dependent on both 
time and space 

– FTQEC opcodes may account for real-time 
feedback or track evolving error state

– Tradeoff in QEC codes and physical noise models

• We use numerical simulation to certify 
specifications of opcodes for block and surface 
codes

– QASM-based noisy circuit modeling with stabilizer-
based numerical simulations 

– Pseudo-threshold calculations for FTQEC opcodes

– Bennink et al., “Unbiased Simulation of Near-Clifford 
Quantum Circuits,” Phys. Rev. A 95, 062337 (2017)

– Path integral methods with O(n^3) memory requirment

Steane [7,1,3] encoding circuit

One syndrome measurement circuit
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Gate fields define how opcodes are implemented

• This is were the physics lives!

– Field specs are strongly dependent on technology and 
device design: solid state, atomic, photonic, etc.

– Designed to address time-sensitive data registers

• Interplay with decoherence, control, and QEC

• Sets register lifetime and effective circuit depth

• Gates are modeled as externally controlled Hamiltonians 
driving the register state

– Gate designs define expectations for behavior but gate 
operations must be validated

– Actual behavior is characterized by experiment with 
support from simulation and heuristics

– Humble et al.,” A Computational Workflow for Designing Silicon 
Donor Qubits,” Nanotechnology 27, 424002 (2016) (2016).

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy
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Modeling and Simulation of the Accelerator System

• We model interactions between hardware 
components using these language interfaces

– We construct an executable model for the architecture 
and the component devices

– The model is the input to a simulator that estimates 
system behaviors and metrics

• We use the Structural Simulation Toolkit (SST) to 
model nodes, memory, network

– SST is a discrete-event simulations used to model 
conventional computing systems

– It has existing models that account for data 
movement, latency, and power consumption

– We use it to profile applications against architecture 
and device parameters

Component

Event 

handler

Component

Event 

handler

Link Event

http://sst-simulator.org/
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Capturing CPU-MEM-QPU Interactions

• A 4-core CPU connected to a 
QPU via a memory hierarchy

Shared Memory Machine

QPU
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Capturing CPU-MEM-QPU Interactions

• A 4-core CPU connected to a 
QPU via a memory hierarchy

Shared Memory Machine

QPU
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Capturing CPU-MEM-QPU Interactions

• CPU Model snippet • QPU Model snippet
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• Test-based output shows instruction work flows

Our current model captures CPU-QPU interactions

• Python script executes model within SST framework
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Test Case: Energy Requirements for Unstructured Search

• Problem: Find a specific item in an unstructured 
database

– The optimal classical algorithm to find a marked item 
requires N/2 queries for an N-item database

– Parallelizable across K system nodes with K-fold 
gather as the last step

• Quantum search is a method for finding an item in 
an unstructured database

– First proposed by Grover (1996)

– Sqrt(N) queries to find a single marked item

– Sqrt(N/M) queries to find one of M marked items

– Partial search: decompose N into K subsets, find the 
subset containing the marked item

• What are the expectations for energy requirements?

Example: Function inversion 

y = h(x)  => h-1(y) = x

Bitcoin mining

Hash(x) = SHA256(SHA256(x))

x => 4 bytes = nonce
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Defining the Energy Usage Metric 

• We add up the number of gates required to implement 
quantum search in silicon qubit technology.

– We use energy per gate based state of the art 
methods

– We include simplified query implementation

– We assume all transversal gates for FTQEC

– We assume complete connectivity of qubits, no 
congestion

• We test for a range of input sizes, large sizes

– n = 32,   N = 4.9 x 109, possible Bitcoin nonces

– n = 64,   N = 1.8 x 1019, modern CPU address space

– n = 128, N = 3.4 x 1038, number of IPv6 addresses

Program

FTQEC
Energy 

Usage

Gates
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Estimating Energy Costs for a Silicon Quantum Computer

• Flip-flop architecture for qubits in silicon

– Two-qubit gates induced through long-range 
resonators

– Single-electron transistor (SET) is used to 
readout and initialize spin state

– Tosi et al., arXiv:1509.08538

Qubit Time Power Energy

Flip-flop 40 ns 0.1 pW 4 zJ

VSD = 100 uV

ISET = 1 nA

Tread = 100 us

Eread = 5 aJ

Tinit = 300 us

Einit = 5 aJ
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Conventional Computing Baseline

• A serial search through a list

– We use brute force search program to 
compile into assembly instructions

– 6 Instructions per iteration

– N/2 iterations, average-case

• We estimate energy per instruction

– Intel Core i7-6700K

– 2.73 pJ Energy Per Instruction (EPI)

• 1.35V, 1.5 pF, 91W

– 3.7pJ/bit for DRAM read (best)

• Deng et al., ASPLOS 2011

– log(N) bits per read



38 T. S. Humble

CPU vs QPU Energy Estimates (Steane FTQEC)
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Energy Dividends

• Energy cost scales exponentially with input for 
all methods due to growth in queries

– Quantum appears feasible for all input sizes

– Energy for conventional CPU is split across 
memory movement and comparator

– Energy for QPU is dominated by logical Query 
and Diffusion stages

– FTQEC, syndromes are main contributor

• Working on system power usage

– Need gate parallelization, scheduling methods

– ROM: Level-2 FTQEC, 64-bits, 20 days, ~3 nW

– Need to include field generators, decoding 
costs, instruction movement, thermodynamics 

n Usage [J] Dividend [J]

32 10-8 10-1

64 10-3 109

128 107 1028

Level-2 FTQEC Energy Usage

107 J

In terms of gravitational energy:

1028  J
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Summary

• We are developing system software to 
integrate QPU’s with modern scientific 
workflows for HPC

• We are evaluating when QPU’s can 
accelerate this work and when usage 
warrants integration

• The rise of commercial QPU’s is likely to 
lead to many new ideas and applications

• Verifying the benefits of quantum 
computing is become increasingly 
necessary for science



The End


