
ORNL is managed by UT-Battelle

for the US Department of Energy

Systems and Software for Quantum Computing

Travis Humble
Quantum Computing Institute
Oak Ridge National Laboratory

Presented to North Carolina State University

Presented 27 Feb 2018, Google Hangouts

This work is supported by the DOE ASCR Early Career Research Program

and the ORNL LDRD fund.

2 T. S. Humble

Scientific Applications of Quantum Computing

• Algorithms within the quantum computing model
are found to take fewer steps to solve key problems

• Factoring

• Unstructured Search

• Eigensystems

• Linear Systems

• Several physical domains motivate quantum
computing as a paradigm for scientific computing

• High-energy Physics

• Materials Science

• Chemistry

• Biological Systems

A complexity hierarchy hypothesis

?

The relationship of BQP to other relevant classes is

still largely uncertain.

• P  BPP  BQP

• Is BPP = BQP?

• Quantum Simulation

• Partition Functions

• Discrete Optimization

• Machine Learning

• Artificial Intelligence

• Data Analytics

• Planning and Routing

• Verification and Validation • Does BQP intersect NP?

• Does BQP intersect NP-Hard?

3 T. S. Humble

Current Quantum Processing Units

• QPU’s are devices that implement the principles
of digital quantum computing

– Many different technologies demonstrated

– Small-scale registers (1-50)

– Very high 1-qubit gate fidelities (0.999+)

– Moderately high 2-qubit gate fidelities (0.99+)

– Limited connectivity, addressability

– Sequences of operations demonstrated

– Small-scale applications

• Early stage vendors are offering QPU access

– D-Wave, IBM, IonQ, Google, Rigetti, etc.

– Client-server interaction model

– Very loose integration with modern computing

Superconducting chip

from D-Wave Systems

Superconducting

chip from IBM

Linear optical chip from

Univ. Bristol/QET Labs

Superconducting chip

from Rigetti

Ion trap chip from

Sandia

Superconducting chip

from Google

4 T. S. Humble

Modern Scientific Computing

• State-of-the-art scientific computing is
dominated by massively parallel processing

– Support large-scale linear algebra and pde problems
for complex, multi-scale models

– Application codes are parallelized and capable of
utilizing distributed resources

– Constrained by programming complexity, memory
latency, and power consumption

Titan HPC system composed from 18,688 nodes

with a peak performance of 18 petaflops

Summit HPC system is designed to have a peak

performance of 200 petaflops

System Rmax(PF) Memory (TiB) Power (MW)

TaihuLight 93.0 1,310 15.4

Tianhe-2 33.8 1,375 17.8

Piz Daint 19.6 340 2.2

Gyoukou 19.1 575 7.9

Titan 17.6 710 8.2

Top 5 HPC systems ranked by LINPACK benchmark (Nov 2017)

5 T. S. Humble

Quantum-accelerated High-Performance Computing

• We are addressing development of
quantum computing co-design

– We are testing and tuning new
programming and execution models

– We are benchmarking against physical,
computational, and scientific metrics

• Are QPUs compatible with modern
computing?

– When do QPU’s accelerate applications
relative to state of the art HPC?

– What are the behavioral and functional
requirements placed on the processor?

Integration of existing QPUs faces engineering barriers

Computer node with interconnect for Titan architecture

6 T. S. Humble

What is the architecture of these systems?

• There are several possible architectures for an HPC
system with QPUs

– Abstract machine models explore design
alternatives, basis for performance expectations

– The models are differentiated by how the quantum
processing is partitioned

– The architecture impacts the programming model,
domain decomposition driven by algorithms

• Architecture choices impact computational power

– Hilbert space for n nodes with q-qubit registers

– Communication costs for size mq messages

n2q vs. 2nq

mqn vs. mqn
2

Shared Memory Machine

QPU

Node

QPUQPU

Node Node

QPU

Interconnect

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect

7 T. S. Humble

Quantum Accelerator Node Model

• A node may be composed from CPUs GPUs, and
memory hierarchies as well as QPUs.

• The quantum processing unit (QPU) encompasses
methods for parsing and executing quantum programs.

• The quantum control unit (QCU) parses instruction
sent by the CPU.

• A quantum execution unit (QEU) applies fields to
initiate gates. There may be multiple QEU’s.

• Applied fields drive changes in the quantum register.
The register state stores the value of the computation.

• I/O is based on fields to prepare and measure the
register in computational basis states.

• Network interfaces for the conventional (NIC) and
quantum (QNIC) interconnects support communication

Node

QPU

REG

QCU

QEU

CPU

MEM

GPU

NIC
QNIC

8 T. S. Humble

QPU Execution Model

• A typical interaction sequence between node components
illustrates the language hierarchy for program execution

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

9 T. S. Humble

Domain Specific Languages for QPUs

• QPU’s require unique language considerations

– Rigorous constraints on logical primitives

• No cloning prohibits memcpy, = sign

• Pure functions avoid entanglement side effects

– Non-local communication primitives

• Teleportation uses pre-allocated resources

– Syntax varies with QPU operational models

• Many existing quantum programming language (QPLs)
largely address these concerns

– Embedded domain specific languages (DSL); Quipper
(Haskell), Scaffold (C), LiQui|> (F#), ProjectQ (python)

– All require expert knowledge of quantum computing and
they do not integrate with existing workflows

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

10 T. S. Humble

Accelerator Programming Framework

• We are developing an OpenCL-like approach to QPU
programming called XACC

– User picks the host language and defines a ‘kernel’
within a DSL tailored to the available QPU

– Example: Host C/C++ program using Scaffold kernel to
run on Rigetti QPU

• XACC links and manages QPU resources

– Programming directives to manage QPU usage

– Compilation mechanisms to support device-specific
concerns, based off llvm

• There are several key benefits to the user

– Maintain existing application codes

– Employ host language and tools, e.g., C, Fortran

– Easily switch between accelerator languages, SDKs

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

11 T. S. Humble

Programming Quantum Accelerators

• XACC: https://github.com/ornl-qci/xacc

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

12 T. S. Humble

VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

13 T. S. Humble

VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

14 T. S. Humble

VQE example code using XACC

Host application, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

15 T. S. Humble

VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

16 T. S. Humble

VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

17 T. S. Humble

VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

18 T. S. Humble

VQE example code using XACC

VQEProblem Class, C/C++ code

https://github.com/ORNL-QCI/xacc-vqe

19 T. S. Humble

VQE example code using XACC

TNQVM accelerator, Tensor network (MPS) numerical simulator

https://github.com/ORNL-QCI/tnqvm

20 T. S. Humble

VQE example code using XACC

TNQVM accelerator, Tensor network (MPS) numerical simulator

https://github.com/ORNL-QCI/tnqvm

21 T. S. Humble

Executing the Compiled Program

• In principle, programming models translate DSLs into
executable instructions

– (All?) Existing QPL’s create interpreted representations

– Actual QPU scheduling based on interpreters

• We are developing virtual machine representations for
interpreters and numerical simulators

– Virtual machine paradigm uses hardware abstraction
layer to manage different QPU devices

• Current API’s for IBM, Rigetti, and D-Wave

– VM also offers interaction with numerical simulator

• Currently using quantum state simulation

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

22 T. S. Humble

How does a host OS manage a QPU?

• Current QPUs are very loosely integrated with

the host system, e.g., client-server interactions

– This is driven by infrastructure constraints

• The host run-time system must accommodate

the QPU device and the programming model

– The run-time system is responsible for managing

resources, errors, permissions

– Instructions must be issued to the QCU via

memory managed by the OS

– Some program control statements require

measurement feedback for evaluation

– This evaluation may be caught closer to QEU

given additional synchronization

Programming
Model

Execution
Model Hardware Abstraction

Layer

OS

QPU

Application Framework

System Libraries

Scheduler

CPU MEM

23 T. S. Humble

The ISA provides an interface for the QPU

• The logic supported by QPUs is under negotiation

– QASM is a popular pseudo-code, but it has lacked a
complete definition for 20 years

– Recent specifications try to fill this gap for gate model

• RISC vs CISC ISA designs impact performance

– Example: how should we initialize the register?

– Britt and Humble, “Instruction Set Architectures for
Quantum Processing Units,” arXiv:1707.06202

• We are developing software to analyze instruction
and evaluate tradeoffs

– Parser, lexer, and listener for walking source files

– We are adding technology constraints, e.g., register
size, connectivity limitations

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

24 T. S. Humble

QPU Programming depends on device ISA

• IBM has released a written spec for their variant
of QASM

– https://github.com/IBM/qiskit-openqasm

– Not a complete language spec (embedded)

• Rigetti has a complete language specification

– A Practical Quantum Instruction Set Architecture,
arxiv:1608.03355

ANTRL4 grammar specification for Open QASM

25 T. S. Humble

Instructions trigger machine opcodes

• Opcodes trigger the execution units to apply fields

– These are dependent on microarchitecture, QEC
specifications, and device parameters

– The implementation is tied to how we use quantum
execution units

• Ensuring fault-tolerant operation requires additional gates
and registers

– Quantum error correction codes redundantly encode state
information

– Syndrome measurements query if the state lies outside the
codespace

– Correction operations return state to the correct codespace

– QEU scope differs these concerns to device maker

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

26 T. S. Humble

Implementing FTQEC operations

• Opcode scheduling becomes dependent on both
time and space

– FTQEC opcodes may account for real-time
feedback or track evolving error state

– Tradeoff in QEC codes and physical noise models

• We use numerical simulation to certify
specifications of opcodes for block and surface
codes

– QASM-based noisy circuit modeling with stabilizer-
based numerical simulations

– Pseudo-threshold calculations for FTQEC opcodes

– Bennink et al., “Unbiased Simulation of Near-Clifford
Quantum Circuits,” Phys. Rev. A 95, 062337 (2017)

– Path integral methods with O(n^3) memory requirment

Steane [7,1,3] encoding circuit

One syndrome measurement circuit

27 T. S. Humble

Gate fields define how opcodes are implemented

• This is were the physics lives!

– Field specs are strongly dependent on technology and
device design: solid state, atomic, photonic, etc.

– Designed to address time-sensitive data registers

• Interplay with decoherence, control, and QEC

• Sets register lifetime and effective circuit depth

• Gates are modeled as externally controlled Hamiltonians
driving the register state

– Gate designs define expectations for behavior but gate
operations must be validated

– Actual behavior is characterized by experiment with
support from simulation and heuristics

– Humble et al.,” A Computational Workflow for Designing Silicon
Donor Qubits,” Nanotechnology 27, 424002 (2016) (2016).

Programming Language

Program Binary

Instruction Set Architecture

FTQEC Opcodes

Gate Fields

Language Hierarchy

28 T. S. Humble

Modeling and Simulation of the Accelerator System

• We model interactions between hardware
components using these language interfaces

– We construct an executable model for the architecture
and the component devices

– The model is the input to a simulator that estimates
system behaviors and metrics

• We use the Structural Simulation Toolkit (SST) to
model nodes, memory, network

– SST is a discrete-event simulations used to model
conventional computing systems

– It has existing models that account for data
movement, latency, and power consumption

– We use it to profile applications against architecture
and device parameters

Component

Event

handler

Component

Event

handler

Link Event

http://sst-simulator.org/

29 T. S. Humble

Capturing CPU-MEM-QPU Interactions

• A 4-core CPU connected to a
QPU via a memory hierarchy

Shared Memory Machine

QPU

30 T. S. Humble

Capturing CPU-MEM-QPU Interactions

• A 4-core CPU connected to a
QPU via a memory hierarchy

Shared Memory Machine

QPU

31 T. S. Humble

Capturing CPU-MEM-QPU Interactions

• A 4-core CPU connected to a
QPU via a memory hierarchy

Shared Memory Machine

QPU

32 T. S. Humble

Capturing CPU-MEM-QPU Interactions

• CPU Model snippet • QPU Model snippet

33 T. S. Humble

• Test-based output shows instruction work flows

Our current model captures CPU-QPU interactions

• Python script executes model within SST framework

34 T. S. Humble

Test Case: Energy Requirements for Unstructured Search

• Problem: Find a specific item in an unstructured
database

– The optimal classical algorithm to find a marked item
requires N/2 queries for an N-item database

– Parallelizable across K system nodes with K-fold
gather as the last step

• Quantum search is a method for finding an item in
an unstructured database

– First proposed by Grover (1996)

– Sqrt(N) queries to find a single marked item

– Sqrt(N/M) queries to find one of M marked items

– Partial search: decompose N into K subsets, find the
subset containing the marked item

• What are the expectations for energy requirements?

Example: Function inversion

y = h(x) => h-1(y) = x

Bitcoin mining

Hash(x) = SHA256(SHA256(x))

x => 4 bytes = nonce

35 T. S. Humble

Defining the Energy Usage Metric

• We add up the number of gates required to implement
quantum search in silicon qubit technology.

– We use energy per gate based state of the art
methods

– We include simplified query implementation

– We assume all transversal gates for FTQEC

– We assume complete connectivity of qubits, no
congestion

• We test for a range of input sizes, large sizes

– n = 32, N = 4.9 x 109, possible Bitcoin nonces

– n = 64, N = 1.8 x 1019, modern CPU address space

– n = 128, N = 3.4 x 1038, number of IPv6 addresses

Program

FTQEC
Energy

Usage

Gates

36 T. S. Humble

Estimating Energy Costs for a Silicon Quantum Computer

• Flip-flop architecture for qubits in silicon

– Two-qubit gates induced through long-range
resonators

– Single-electron transistor (SET) is used to
readout and initialize spin state

– Tosi et al., arXiv:1509.08538

Qubit Time Power Energy

Flip-flop 40 ns 0.1 pW 4 zJ

VSD = 100 uV

ISET = 1 nA

Tread = 100 us

Eread = 5 aJ

Tinit = 300 us

Einit = 5 aJ

37 T. S. Humble

Conventional Computing Baseline

• A serial search through a list

– We use brute force search program to
compile into assembly instructions

– 6 Instructions per iteration

– N/2 iterations, average-case

• We estimate energy per instruction

– Intel Core i7-6700K

– 2.73 pJ Energy Per Instruction (EPI)

• 1.35V, 1.5 pF, 91W

– 3.7pJ/bit for DRAM read (best)

• Deng et al., ASPLOS 2011

– log(N) bits per read

38 T. S. Humble

CPU vs QPU Energy Estimates (Steane FTQEC)

1E-16

1E-12

1E-08

1E-04

1E+00

1E+04

1E+08

1E+12

1E+16

1E+20

1E+24

1E+28

0 20 40 60 80 100 120 140

Flip-flop Qubit Intel (w mem) Intel w/o mem Level-1 FTQEC Level-2 FTQEC

Database Size [bits]

L
o

g
1
0
(E

n
e

rg
y
 [
J
])

39 T. S. Humble

Energy Dividends

• Energy cost scales exponentially with input for
all methods due to growth in queries

– Quantum appears feasible for all input sizes

– Energy for conventional CPU is split across
memory movement and comparator

– Energy for QPU is dominated by logical Query
and Diffusion stages

– FTQEC, syndromes are main contributor

• Working on system power usage

– Need gate parallelization, scheduling methods

– ROM: Level-2 FTQEC, 64-bits, 20 days, ~3 nW

– Need to include field generators, decoding
costs, instruction movement, thermodynamics

n Usage [J] Dividend [J]

32 10-8 10-1

64 10-3 109

128 107 1028

Level-2 FTQEC Energy Usage

107 J

In terms of gravitational energy:

1028 J

40 T. S. Humble

Energy Dividends

• Energy cost scales exponentially with input for
all methods due to growth in queries

– Quantum appears feasible for all input sizes

– Energy for conventional CPU is split across
memory movement and comparator

– Energy for QPU is dominated by logical Query
and Diffusion stages

– FTQEC, syndromes are main contributor

• Working on system power usage

– Need gate parallelization, scheduling methods

– ROM: Level-2 FTQEC, 64-bits, 20 days, ~3 nW

– Need to include field generators, decoding
costs, instruction movement, thermodynamics

n Usage [J] Dividend [J]

32 10-8 10-1

64 10-3 109

128 107 1028

Level-2 FTQEC Energy Usage

107 J

In terms of gravitational energy:

1028 J

41 T. S. Humble

Summary

• We are developing system software to
integrate QPU’s with modern scientific
workflows for HPC

• We are evaluating when QPU’s can
accelerate this work and when usage
warrants integration

• The rise of commercial QPU’s is likely to
lead to many new ideas and applications

• Verifying the benefits of quantum
computing is become increasingly
necessary for science

The End

