Presented to North Carolina State University

Systems and Software for Quantum Computing

Travis Humble
Quantum Computing Institute
Oak Ridge National Laboratory

This work is supported by the DOE ASCR Early Career Research Program
and the ORNL LDRD fund.

ORNL is managed by UT-Battelle
for the US Department of Energy Presented 27 Feb 2018, Google Hangouts

%NOAI{ RIDGE

atiomal Lahurulr_'rr_v_.-'



Scientific Applications of Quantum Computing

* Algorithms within the quantum computing model
are found to take fewer steps to solve key problems

 Factoring
 Unstructured Search
» Eigensystems
 Linear Systems

* Quantum Simulation

* Partition Functions

 Discrete Optimization

* Machine Learning

« Several physical domains motivate quantum

computing as a paradigm for scientific computing

* High-energy Physics
* Materials Science

* Chemistry

* Biological Systems

Artificial Intelligence

Data Analytics

Planning and Routing
Verification and Validation

BQP

A complexity hierarchy hypothesis

The relationship of BQP to other relevant classes is
still largely uncertain.

 PcBPPc<cBQP + Does BQP intersect NP?
Is BPP = BQP? » Does BQP intersect NP-Hard?

¥ OAK RIDGE

- National Laboratory



Current Quantum Processing Units

 QPU'’s are devices that implement the principles

of digital qguantum computing

— Many different technologies demonstrated

— Small-scale registers (1-50)

— Very high 1-qubit gate fidelities (0.999+)
— Moderately high 2-qubit gate fidelities (0.99+)

— Limited connectivity, addressability

— Sequences of operations demonstrated

— Small-scale applications

- Early stage vendors are offering QPU access
— D-Wave, IBM, lonQ, Google, Rigetti, etc.

— Client-server interaction model

— Very loose integration with modern computing

e

IS
g

stiinnire
|

-y
o

s

Superconducting from Rigetti
chip from IBM T S

’

T4,

i
// / Superconducting chip
‘e o _ from D-Wave Systems
Superconducting chip

from Google

— Ny ‘ Linear optical chip from
lon trap chip from Univ. Bristol/QET Labs
Sandia
%OAK RIDGE

- National Laboratory



Modern Scientific Computing

 State-of-the-art scientific computing is

dominated by massively parallel processing
— Support large-scale linear algebra and pde problems

for complex, multi-scale models

— Application codes are parallelized and capable of
utilizing distributed resources

— Constrained by programming complexity, memory

latency, and power consumption
Top 5 HPC systems ranked by LINPACK benchmark (Nov 2017)

Rya(PF) | Memory (TiB) | Power (MW)

TaihuLight
Tianhe-2
Piz Daint
Gyoukou
Titan

93.0
33.8
19.6
19.1
17.6

1,310
1,375
340
575
710

15.4
17.8
2.2
7.9
8.2

Titan HPC system composed from 18,688 nodes
with a peak performance of 18 petaflops

< \‘3
y,

Summit HPC system is designed to have a peak

performance of 200 petaflops

¥ OAK RIDGE

- National Laboratory



Quantum-accelerated High-Performance Computing

* We are addressing development of
guantum computing co-design

— We are testing and tuning new
programming and execution models

— We are benchmarking against physical,
computational, and scientific metrics

* Are QPUs compatible with modern
computing?

— When do QPU’s accelerate applications
relative to state of the art HPC?

— What are the behavioral and functional
requirements placed on the processor?

Computer node with interconnect for Titan architecture
Cray XK7 - Accelerated Compute Nodes

1

|
|
I "ﬁ |
gl bl . — (=t
| » o"_.':-“". =2
wod

I‘Ii ( -—\&N |

W‘/
l"’\'l 3 l = 4§
;: leﬁm

XK7 Blade A Pair of XK7 Nodes

Integration of existing QPUs faces engineering barriers

;g,OAK RIDGE

National Labora 1tOry



What Is the architecture of these systems?

 There are several possible architectures for an HPC
system with QPUs

— Abstract machine models explore design
alternatives, basis for performance expectations

— The models are differentiated by how the quantum
processing is partitioned

— The architecture impacts the programming model,
domain decomposition driven by algorithms

« Architecture choices impact computational power
— Hilbert space for n nodes with g-qubit registers

n2? vs. 2™
— Communication costs for size m, messages

2
mqn VS. mqn

Shared Memory Machine

QPU
Interconnect
I I I
Node Node Node
I I I
QPU QPU QPU
Interconnect
I I I
Node Node Node
I I
QPU QPU QPU

Quantum Interconnect

%QAK RIDGE

- National Laboratory



Quantum Accelerator Node Model

A node may be composed from CPUs GPUs, and
memory hierarchies as well as QPUs.

The quantum processing unit (QPU) encompasses
methods for parsing and executing quantum programs.

The quantum control unit (QCU) parses instruction
sent by the CPU.

A quantum execution unit (QEU) applies fields to
initiate gates. There may be multiple QEU’s.

Applied fields drive changes in the quantum register.
The register state stores the value of the computation.

/O is based on fields to prepare and measure the
register in computational basis states.

Network interfaces for the conventional (NIC) and
guantum (QNIC) interconnects support communication

¥ OAK RIDGE

- National Laboratory



QPU Execution Model

 Atypical interaction sequence between node components
illustrates the language hierarchy for program execution Language Hierarchy

CPU Memory QCU QEU Register

Programming Language ‘
1. Issue instructions

2. Send instructions _
e Program Binary |
i 33 Parse instructions §
| 4. Issue operands | Instruction Set Architecture |
| | 5. Apply fields :

6. Collect fields

7. Collects data

FTQEC Opcodes ‘

8. Parse data

9. Send value e - Gate Fields |

<10. Return value

¥ OAK RIDGE

- National Laboratory



Domain Specific Languages for QPUs

- QPU'’s require unique language considerations Language Hierarchy
— Rigorous constraints on logical primitives
- No cloning prohibits memcpy, = sign -y | Programming Language ‘
« Pure functions avoid entanglement side effects
— Non-local communication primitives Program Binary ‘

 Teleportation uses pre-allocated resources
— Syntax varies with QPU operational models

Instruction Set Architecture |

« Many existing quantum programming language (QPLS)
largely address these concerns J

— Embedded domain specific languages (DSL); Quipper FTQEC Opcodes
(Haskell), Scaffold (C), LiQui|> (F#), ProjectQ (python)

— All require expert knowledge of quantum computing and Gate Fields
they do not integrate with existing workflows

%QAK RIDGE

- National Laboratory



Accelerator Programming Framework

 We are developing an OpenCL-like approach to QPU Language Hierarchy
programming called XACC
— User picks the host language and defines a ‘kernel’ ey | Programming Language ‘

within a DSL tailored to the available QPU
— Example: Host C/C++ program using Scaffold kernel to

run on Rigetti QPU Program Binary
« XACC links and manages QPU resources
— Programming directives to manage QPU usage Instruction Set Architecture |
— Compilation mechanisms to support device-specific
concerns, based off llvm FTQEC Opcodes J
* There are several key benefits to the user
— Maintain existing application codes
J abp Gate Fields
— Employ host language and tools, e.g., C, Fortran

— Easily switch between accelerator languages, SDKs $OAK RIDGE

- National Laboratory



Programming Quantum Accelerators

« XACC: https://github.com/ornl-qci/xacc _
Language Hierarchy

Gate Model Computing Adiabatic Model C ti .
ohete Toce e ey Programming Language

Scaffold | | ProjectQ || pyQuil QMASM ToQ QuellE

XACC - Heterogeneous CPU-QPU
Programming Model Instruction Set Architecture

L a0
N

ol

Program Binary ‘

—a— o ¥ N FTQEC Opcod |
B ) () (ox ) (awa ) (- ) g

Gate Fields ‘

¥ OAK RIDGE

- National Laboratory



VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge

Host application, C/C++ code

int main(int argc, char®** argv) {

// All our important stuff is in the xacc::vge namespace

using namespace xacc::vqge;

// set the default Accelerator to TNQVM, and
// detault number of electrons to 2
xacc::setAccelerator("tnqvm™);

xacc::setOption(“n-electrons™, "2");

OAK RIDGE

- National Laboratory



VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge
Host application, C/C++ code

int main(int argc, char®** argv) {

// All our important stuff is in the xacc::vge namespace

using namespace xacc::vqge;

std::ifstream moleculeKernelHpp(xacc::getOption("vqe-kernel-file"));

VQEProblem problem(moleculeKernelHpp);

auto params = problem.initializeParameters();
cppoptlib: :NelderMeadSolver<VvQEProblem> solver;
solver.setStopCriteria(VQEProblem: :getConvergenceCriteria());

solver.minimize(problem, params);

¥ OAK RIDGE

- National Laboratory



VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge
Host application, C/C++ code

int main(int argc, char®** argv) {

// All our important stuff is in the xacc::vge namespace

using namespace xacc::vqge;

std::ifstream moleculeKernelHpp(xacc::getoption(“vqge-kernel-file"));
C::EQEPrnblem Prﬂblem(leECUlEKEPnEalp)i;:;}

auto params = problem.initializeParameters();
cppoptlib: :NelderMeadSolver<VvQEProblem> solver;
solver.setStopCriteria(VQEProblem: :getConvergenceCriteria());

solver.minimize(problem, params);

¥ OAK RIDGE

- National Laboratory



VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge

VQEProblem Class, C/C++ code

VQEProblem(std::istream& moleculeKernel) : nParameters(®), currentEnergy(©.8) {
// This class only takes kernels
// represented as Fermion Kernels.

xacc::setCompiler("fermion™);

// Create the Accelerator. This will be TNQVM
// if --accelerator not passed to this executable.

gpu = xacc::getaAccelerator();

// Create the Program

Program program(qpu, moleculeKernel);

// Start compilation
program.build();

// Create a buffer of qubits
nQubits = std::stoi(xacc::getOoption("n-qubits"™));

// Get the Kernels that were created %OAK RIDGE

kernels = program.getRuntimeKernels(); - National Laboratory




VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge

VQEProblem Class, C/C++ code

VéEProblem(std::istream& moleculeKernel) : nParameters(®), currentEnergy(8.0) {
// This class only takes kernels
// represented as Fermion Kernels.

xacc::setCompiler("fermion™);

// Create the Accelerator. This will be TNQVM
// if --accelerator not passed to this executable.

gpu = xacc::getaAccelerator();

// Create the Program

Program program(qpu, moleculeKernel);

// Start compilation
program.build();

// Create a buffer of qubits
nQubits = std::stoi(xacc::getOoption("n-qubits"™));

mnels that L'Jm_ OAK RIDGE
Wﬁram .getRu nti%/ ” National Laboratory




VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge

VQEProblem Class, C/C++ code

VQEProblem(std::istream& moleculeKernel) : nParameters(®), currentEnergy(©.8) {

#pragma omp parallel for reduction (+:sum)

for (int 1 = @; 1 < kernels.size(); i++) {

// Get the ith Kernel

auto kernel = kernels[1i];

// Insert the state preparation circuit IR
// at location @ 1n this Kernels IR instructions.

kernel.getIRFunction()->insertInstruction(e, evaluatedStatePrep);

// Create a temporary buffer of qubits
auto buff = qpu->createBuffer(”qreg”, nQubits);

// Execute the kernell
kernel(buff);




VOQE example code using XACC

https://github.com/ORNL-QCI/xacc-vge

VQEProblem Class, C/C++ code

VQEProblem(std::istream& moleculeKernel) : nParameters(®), currentEnergy(©.8) {

#pragma omp parallel for reduction (+:sum)

for (int 1 = @; 1 < kernels.size(); i++) {

// Get the ith Kernel

auto kernel = kernels[1i];

// Insert the state preparation circuit IR
// at location @ 1n this Kernels IR instructions.

kernel.getIRFunction()->insertInstruction(e, evaluatedStatePrep);

// Create a temporary buffer of qubits
auto buff = qpu->createBuffer(”qreg”, nQubits);

f,fffﬂﬁrﬁﬂj?FE;;cute the E;FEEIT—‘E““EEEK
S~ kernel(buff);




VQE example code using XACC

https://github.com/ORNL-QCI/thqvm

TNQVM accelerator, Tensor network (MPS) numerical simulator

o1

& & o
a2 -

<
w

Energy (I-!artrges) .

=4
@

'
o
~d

-0.8

1.05 1.1

1.15 1.2 1.25 1.3 1.35 1.4 1.48

Bond Length R (Angstroms)

¥ OAK RIDGE

- National Laboratory



Energy (I-!artrges) .

VOQE example code using XACC

https://github.com/ORNL-QCI/thqvm

TNQVM accelerator, Tensor network (MPS) numerical simulator

0.1

ON X/ Gnuplot
0
o1 'EnerqiesVsThetas,cav’
0.2
0.3
0.4 0.2 - r;
0.3 t i ;; ;ﬂn 75 .. H*H
05 0.4 | oL ‘f s s R, :!.”
s 05 L ’i’ l**** fffﬂ;_: :*‘.:ﬂ'ﬁf ij{!ff‘*} *iif‘,;**{';ﬂ?ﬁ
o7 L .* *ﬂh a'! N fr**ﬁﬂf*r"“x"
-0.7 -0.8 | ’,} . * }q}?x
-0.9 "‘F " F'-'-":,rf Y o
1t . M Nl
1.1 - _'.-" %
-0.9 i
1.1 -4

IE
uiewi EI:JICIUCII:)i 45i0000 su::alei 1i00000i 1IUCICICIU PEY




Executing the Compiled Program

- In principle, programming models translate DSLs into Language Hierarchy
executable instructions
— (All?) Existing QPL’s create interpreted representations | Programming Language ‘

— Actual QPU scheduling based on interpreters

 We are developing virtual machine representations for é Program Binary
Interpreters and numerical simulators

— Virtual machine paradigm uses hardware abstraction
layer to manage different QPU devices

« Current API’s for IBM, Rigetti, and D-Wave J

Instruction Set Architecture |

— VM also offers interaction with numerical simulator FTQEC Opcodes
 Currently using quantum state simulation

Gate Fields

%QAK RIDGE

- National Laboratory



How does a host OS manage a QPU?

« Current QPUs are very loosely integrated with B .
the host system, e.g., client-server interactions JR /\rrlication Framework
——— . . P ' —_—
— This is driven by infrastructure constraints mghﬂ,irg‘;‘ o e
System Libraries
— The run-time system is responsible for managing OS Scheduler
resources, errors, permissions

* The host run-time system must accommodate
the QPU device and the programming model

— Instructions must be issued to the QCU via Execution

memory managed by the OS Model Hardware Abstraction

Layer

— Some program control statements require E—— —
measurement feedback for evaluation

— This evaluation may be caught closer to QEU T
given additional synchronization

¥ OAK RIDGE

- National Laboratory



The ISA provides an interface for the QPU

- The logic supported by QPUs is under negotiation Language Hierarchy
— QASM is a popular pseudo-code, but it has lacked a _
complete definition for 20 years Programming Language ‘
— Recent specifications try to fill this gap for gate model
- RISC vs CISC ISA designs impact performance Program Binary ‘
— Example: how should we initialize the register?
— Britt and Humble, “Instruction Set Architectures for ﬁ Instruction Set Architecture |
Quantum Processing Units,” arXiv:1707.06202
 We are developing software to analyze instruction
and evaluate tradeoffs FTQEC Opcodes J
— Parser, lexer, and listener for walking source files
— We are adding technology constraints, e.g., register Gate Fields
Size, connectivity limitations

%QAK RIDGE

- National Laboratory



QPU Programming depends on device ISA

* IBM has released a written spec for their variant

of QASM

— https://github.com/IBM/qgiskit-opengasm

Statement

Description

DpenQASM 2.0;

qreg name[size] ;

creg name[size];

include "filename";

gate name(params) qargs { body }
opaque name(params) gargs;

// comment text

U(theta,phi, lambda) qubitiqreg;
CX qubit|qreg,qubit|qreg;
measure qubitiqreg -> bitlcreg;
reset qubitiqreg;

gatenane (parass) qargs;
if(creg==int} qop;

Denotes o file in Open QASM format®
Declare n named register of qubits
Declare a named register of bits
Open and parse another source file
Declare a unitary gate

Decliare an opaque gate

Comment a line of text

Apply built-in single qubit gate(s)"
Apply built-in CNOT gate(s)

Make messurement(s) in Z basis
Prepare qubit(s) in |0)

Apply o userdefined unitary gate
Conditionally apply quantum operation

barrier qargs;

Prevent transformations across this source line

— Not a complete language spec (embedded)

* Rigetti has a complete language specification
— A Practical Quantum Instruction Set Architecture,

arxiv:1608.03355

ANTRL4 grammar specification for Open QASM

e
* This is the Open QASM Grammar Specification for ANTRL4

* We abbreviate it as OQASM

* Created by Travis Humble at Oak Ridge Mational Lab based on IBM Open QASM Specification
=/

grammar OQASM;

JEE
= A program may conists of zero or more lines before end of file
==/
prog
{line? EOL) ;

e
= A line in the program may be several different things
=/
line

1 comment

| instruction

| assemblerinstruction

| 1b1
JEE

= An instruction may have a label, but does have an opcode which may have an argumentlist
==y
instruction

: label? opcode argumentlist? comment?

OAK RIDGE

- National Laboratory




Instructions trigger machine opcodes

- Opcodes trigger the execution units to apply fields Language Hierarchy
— These are dependent on microarchitecture, QEC _
specifications, and device parameters Programming Language ‘

— The implementation is tied to how we use quantum

execution units :
Program Binary

* Ensuring fault-tolerant operation requires additional gates
and registers

— Quantum error correction codes redundantly encode state
information

Instruction Set Architecture |

— Syndrome measurements query if the state lies outside the a FTQEC Opcodes
codespace

— Correction operations return state to the correct codespace

— QEU scope differs these concerns to device maker Gate Fields

%QAK RIDGE

- National Laboratory



Implementing FTQEC operations

« Opcode scheduling becomes dependent on both
time and space

— FTQEC opcodes may account for real-time
feedback or track evolving error state

— Tradeoff in QEC codes and physical noise models

 We use numerical simulation to certify

specifications of opcodes for block and surface

codes

— QASM-based noisy circuit modeling with stabilizer-

based numerical simulations

— Pseudo-threshold calculations for FTQEC opcodes

— Bennink et al., “Unbiased Simulation of Near-Clifford

Quantum Circuits,” Phys. Rev. A 95, 062337 (2017)

— Path integral methods with O(n"*3) memory requirment

Steane [7,1 3] encodmg circuit

Ay

U (i 3
\ \ \ \ | Ll
\ \ \ [ \ &)
i i i i 1 E]
— .
\ \ \ \ | 2]
1 1 1 1 HHE® EMR*
—{H —{H HE] [EH MR-
\ \ \ L H[HE [E-{ MR-
: —it — H MR
%OJ&KRID(JE

al Laborator



Gate fields define how opcodes are implemented

- This is were the physics lives! Language Hierarchy
— Field specs are strongly dependent on technology and _
device design: solid state, atomic, photonic, etc. Programming Language ‘
— Designed to address time-sensitive data registers
* Interplay with decoherence, control, and QEC Program Binary ‘
« Sets register lifetime and effective circuit depth
« Gates are modeled as externally controlled Hamiltonians Instruction Set Architecture |
driving the register state
— Gate designs define expectations for behavior but gate
operations must be validated FTQEC Opcodes

— Actual behavior is characterized by experiment with
support from simulation and heuristics

— Humble et al.,” A Computational Workflow for Designing Silicon é
Donor Qubits,” Nanotechnology 27, 424002 (2016) (2016).

Gate Fields

%QAK RIDGE

- National Laboratory



Modeling and Simulation of the Accelerator System

Vendor Open Vendor Open
Component | | Component | | Component | | Component

 We model interactions between hardware
components using these language interfaces

_ SST Framework Services
— We construct an executable model for the architecture Configuration T
and the component devices — ‘
Partitioning Introspection
— The model is the input to a simulator that estimates
system behaviors and metrics il T
MPI

 We use the Structural Simulation Toolkit (SST) to
model nodes, memory, network SST Core

— SST is a discrete-event simulations used to model

conventional computing systems Component Component
— It has existing models that account for data Event LinkC  Event % Event
movement, latency, and power consumption handler handler
— We use it to profile applications against architecture
and device parameters http://sst-simulator.org/
¥ OAK RIDGE

- National Laboratory



Capturing CPU-MEM-QPU Interactions

L2Cache

o bnigh 0 Leveil BusO L1Cached
g | - o) [ R pon
mnw 0 ow_cptwor 0 ml_m_u *‘n ptwork 0 -~ [
" 3Cache et OWFIGURED - high network %a  [cache
ii gh_network & u-. _'I;z L0 non.,%_o Lll:mml - -
| | w3 2 ﬁmm‘-o - high_netmork %d toMe: ' '
QPU le"gﬂm?l'— tlmn;mx L1Cache2
Em oo et 0 o fpowir. 0 ~ DD . IR N o
frucet 0
_ﬁ ptwork 0 ﬁ: INFIGURED « high_networs 4 W
LI(KT LeveliBus] L:Cm}
o TEw] [ E—
A 4-core CPU connected to a ot g [P g, |, o
QPU via a memory hierarchy — e -
thvcllm
S, L=
nm_o MEM) - R -\n_.w
F w1 - [ons. &= "
—amn — =
—e - = =
A [memery Ink netmork
- - 2 ciibe Jink
Lz ey = i e —
i = =2
Network s
QPy
i 1

ﬁsgrwzﬁmﬂL‘

OAK RIDGE

29 T.S.Humble - National Laboratory



Capturing CPU-MEM-QPU Interactions

LiCache
W
LevellBus0 L1Cached
— Pongeti 0 ] o
ow_ciptwork 0 g setwork, 0 ) 3":7_._ PAGE]
; ch.xne LevellBisd WGURED - gh network %@ feache toMep
Shared Memory Machine TEN
g™ networt 0 e rpermerk 0 g 0 m"— e
T ework 0 ﬁml- dregtory IPROC]
ONAGURED - high_network_%d cache toMe
L2Cache LevellBost
QPU [MEN] [MEM) LiCache2
[MEM]
bigh_metwork 0 0 gt o2
e : ek 0 - TPRGC]
* 0 FIGURED - high network 54  feadl toMe:
L2Cache Level1Bus) L1Cache3
« A 4-core CPU d - e IR ] o
Core ConneCte to a  metwork 0 low_cetwork 0 g network 0 e —.xorv PROC]
PU via a memory hierarch S i
y y low_twork 0
Level2Bus0 M
mﬂll wech [MEM]
E hetwork 0 [MEM] [ ;!m
patwork 1 netwick memary cube ik
—— 2 MemoryDirectaryl 1
‘ 5 hetwork 3 : HEW] MEM)
fow_riptwork 0 %%"r— ey Y k memzey Ink -n«?un
&
low rietwork O jcache
r _______ —_— —
Networn I
|
|
1
pant I QPUBUS QPUControtter
] l | oy
ST Startup Configuration I You v 0 high_netwerk 0 Em_ﬂ a1 [PROC]
] ] INFIGURED - gh networs %d joac! m
— — — — — — — — — — — — — — — — — — — — — — — — —

%OAK RIDGE

National Laboratory




Capturing CPU-MEM-QPU

Shared Memory Machine

QPU

* A 4-core CPU connected to a
QPU via a memory hierarchy

nteractions

LiCache
TNENT]
(o inigh Betwork 0 "'{"‘;:?“"0 L[’::‘TO o
i-’f( ery —0 PROC]
low rvtwork 0 low_rptwork 0 Ngh setwork 0 i work 0 jakegton | '
3 LZCb(h-e LevellBusD ICONFIGURED - hagh network e A e toMep
[MEM] IMEM)
—
y hgh_network & oo remwork 0 high ! ok 0 l::::;el chin
Y —
low %0 rgmork O drectory [PROC]
e ﬁl’:mnu\m - high_netmork %d cache toMe
L2Cache LevellBost
[MEM) LiCachel
|MEM]
Mgh_metwork 0 ow rietwens O high_ o2
ﬁrwunﬁ :.fo [PROC]
CONFGURED « high network 4 cache toMe:
LevetiBus] }l(omd
— "‘.“!:'..1-.. 'I‘.'u't:.'....,.J- e T
MermoryDirectoryl Mermoryl
[MEM] [MEM]
L3Cache &_ : i
[MEM] netwark ) memary rect link netwark
atwaork 0 wﬂl MemoryDirectory2 cube flink
- - MEM
work_0 cache [MEM] Memory2
netwgrk memaory [MEM]
irect link network
cube [link
QPUController
[MEM] QpPU
low_retwork 0 high network 0 ' retwark 0 directory [FROC]
COMFIGLRED - high_network_%d cache toMein

TTTE Y



Capturing CPU-MEM-QPU Interactions

CPU Model snippet

* QPU Model snippet

Sffor(int s=8; s < msg->payload.size(); s++) {

for{int s=8; s < payload_size; s++

S FIXME This should store elements from instruction.queue

msg-»payload.push_back(s);

£f Calculate upcoming size for instruction gueue.

int upcoming_size = current_size - payload size;

A "IF the current size is greater than count, the container is reduced to

S4 FIXME Right now I don't care agbout which elements are removed, but later I wil

instruction_queue.resize(upcoming_size);

A4 Send message

remote_component-rsend(msg);
message_counter_sent++;

if(ocutput_message info) {

il w

std::zcout << " CPU sent message: << message_counter_sent << std::endl;

aw

std:zcout << payload size: << payload size << std::endl;

il w

std:zcout << " CPU queue size: << instruction_queue.size() << std::endl;

S work starts at @

int work_done = @;

"_I' .-'r

completed instruction counter starts gt @
int instruction_counter = @;

A Step through queve, accumulating work time wuntil max is reached

Fffor{int s=8; s < instruction_gqueue.size(); s++) {

while({(work_done < max_work_per_tick) && (instruction_queue.size() !=

@)y 1

A arab the first agvailable instruction code at position s

int an_instruction = instruction_gueue[&];

instruction_queue.pop_front();

A arab time for this instruction from lookup table

A FIXME We don't

check if an_instruction is valid, probably should do that
time_per_instruction = instruction_times[an_instruction];
A FIXME Is work the same as time? No, other Barry, it isn
int work_for_instruction = time_per_instruction;

A/ Add to

total work time

work_done += work_for_instruction;

DGE

- ANALIOILAL n_.auoratory



Our current model captures CPU-QPU interactions

* Python script executes model within SST framework

# QPU-CPU messaging demo
import sst

# Define SST core options
sst.setProgramOption("timebase", "1 ps")
sst.setProgramOption("stopAtCycle", "1 ms")

# Set output for statistics
sst.setStatisticOutput("sst.statOutputConsole")

# Set load level for desired statistics

# Load level defined in elementInfoStatistics entry
# Any statistics at this level or lower is collected
sst.setStatisticLoadLevel(7)

HARARHHH AR ARH YR AR B Y RSB IARHH AR A
# Define the simulation components
HARBRHYH BB IRG YRR BRI Y YRR IR R AR A

# Define QPU component

comp QPU = sst.Component("QPU", "quantum.gpuMessageGeneratorComponent")

# Set parameters for QPU component
comp_QPU.addParams ( {

# outputinfo = 1 means print recevied event message
lloutputinfoll . LU L L 1 nmun P

l’sendcountll : " ""4" n ll,

# clock controls the rate at which messages are issued
"clock " : nmnn IMHZ "wun

})

» Test-based output shows instruction work flows

$ sst test_QpuSimpleMessageGeneratorComponent.py
Clock is configured for: 1MHz
Clock is configured for: 1MHz
CPU initial queue size = 53

d¢ de Je o ok %k de e ok ko ok ok ok

[QPU cycle: 1] (time=1lus)

QPU gqueue size = 0

QPU instructions processed = 0
QPU gueue size = 0

% e de o ok ok % o e e ok ok ek

[CPU cycle: 1] (time=1lus)

CPU queue size = 53

CPU sent message: 1

payload size: 10

CPU queue size: 43

% e de o o ok o ok e e o o o ok ok ok

[QPU event: 1] (time=lus)
payload size: 10

QPU gqueue size: 10

% e de o ok k% de de ok de ok ok

[QPU cycle: 2] (time=2us)

QPU queue size = 10

(instr, work, sum) = (0,1,1)
(instr, work, sum) = (1,1,2)
(instr, work, sum) = (2,1,3)
(instr, work, sum) = (3,1,4)

wAK RIDGE

- National Laboratory



Test Case: Energy Requirements for Unstructured Search

* Problem: Find a specific item in an unstructured
database

— The optimal classical algorithm to find a marked item
requires N/2 gqueries for an N-item database

— Parallelizable across K system nodes with K-fold
gather as the last step

* Quantum search is a method for finding an item in
an unstructured database

— First proposed by Grover (1996) Example: Function inversion

— Sqrt(N) queries to find a single marked item y =h(x) =>h(y) =x

— Sqrt(N/M) queries to find one of M marked items Bitcoin mining

— Partial search: decompose N into K subsets, find the Hash(x) = SHA256(SHA256(x))
subset containing the marked item x => 4 bytes = nonce

 What are the expectations for energy requirements?
¥ OAK RIDGE

- National Laboratory



Defining the Energy Usage Metric

: : Program
 We add up the number of gates required to implement
guantum search in silicon qubit technology.
— We use energy per gate based state of the art m
methods Usage
— We include simplified query implementation
— We assume all transversal gates for FTQEC

— We assume complete connectivity of qubits, no
congestion

* We test for arange of input sizes, large sizes bIAEgg!EQ |

— n=32, N=4.9x10° possible Bitcoin nonces
— n=64, N=1.8x 10, modern CPU address space ol
— n =128, N = 3.4 x 1038, number of IPv6 addresses 3% INTERNETr .

% THINGS i
ST o)

~—y v '

)

¥ OAK RIDGE

- National Laboratory



Estimating Energy Costs for a Silicon Quantum Computer

* Flip-flop architecture for qubits in silicon Qubit Time Power Energy
— Two-qubit gates induced through long-range Flip-flop 40 ns 0.1 pW 4 2]
resonators

— Single-electron transistor (SET) is used to
readout and initialize spin state

— Tosi et al., arXiv:1509.08538

" Vgp = 100 uV
So _
LR lser = 1 NA
4 ' gttt
= —py T,eaq = 100 us R R0 AR AR ARARRANA IO N
| ' _ T R AT YT, 1
-i- taland Eieaq =5 aJ T T T T T T T T T T T
: : : RO : RO : b :
f‘”g'e , T =300 | SRR A AT
omchion Drain \ init — us | IR A AR T s
- = | 2 T 72
Eine = 5 aJ | :T: — Dttt

% OAK RIDGE

- National Laboratory



Conventional Computing Baseline

« A serial search through a list

— We use brute force search program to
compile into assembly instructions

— 6 Instructions per iteration
— NJ/2 iterations, average-case

« We estimate energy per instruction
— Intel Core i7-6700K
— 2.73 pJ Energy Per Instruction (EPI)
- 1.35V, 1.5 pF, 91W
— 3.7pJ/bit for DRAM read (best)
« Deng et al., ASPLOS 2011
— log(N) bits per read

L k2

[ TR ™ =

start:

omp
Jje

add
inc
dec

Jn=z

bx, [51]
found
=i, 2

L

start

¥ OAK RIDGE

- National Laboratory



CPU vs QPU Energy Estimates (Steane FTQEC)

——Flip-flop Qubit ——Intel (w mem) ——Intel w/o mem -=-Level-1 FTQEC -4-Level-2 FTQEC
1E+28 P
/
=

1E+24 //
1E+20

~ 7
EEE 1E+16 //,;”:::::;
= A/
O 1E+12
c /
EJ/ 1E+08 = 4‘
g; 1E+04 ///;/C;;;;; ::;::S::=:=
3 1E+00 ,A/ ‘////
1E-04 /7// / /,/
1E-08 %% 1/
1E-12 ———
1E-16 —
0 20 40 60 80 100 120 140

Database Size [bits] %SZ&?&E%E&:S



Energy Dividends

« Energy cost scales exponentially with input for
all methods due to growth in queries

— Quantum appears feasible for all input sizes

— Energy for conventional CPU is split across
memory movement and comparator

— Energy for QPU is dominated by logical Query
and Diffusion stages

— FTQEC, syndromes are main contributor

Working on system power usage
— Need gate parallelization, scheduling methods
— ROM: Level-2 FTQEC, 64-bits, 20 days, ~3 nW

— Need to include field generators, decoding
costs, instruction movement, thermodynamics

Level-2 FTQEC Energy Usage

n Usage [J] | Dividend [J]
32 108 10-1
64 103 10°

128 107 1028

In terms of gravitational energy:

1028 J

\

o

107 J g A

¥ OAK RIDGE

- Nalioual L’dl.‘U!"‘l(UI‘_\‘



Energy Dividends

« Energy cost scales exponentially with input for
all methods due to growth in queries

— Quantum appears feasible for all input sizes

— Energy for conventional CPU is split across
memory movement and comparator

— Energy for QPU is dominated by logical Query
and Diffusion stages

— FTQEC, syndromes are main contributor

Working on system power usage
— Need gate parallelization, scheduling methods
— ROM: Level-2 FTQEC, 64-bits, 20 days, ~3 nW

— Need to include field generators, decoding
costs, instruction movement, thermodynamics

Level-2 FTQEC Energy Usage

n Usage [J] | Dividend [J]
32 108 10-1
64 103 10°

128 107 1028

In terms of gravitational energy:

¥ OAK RIDGE

- National Laboratory



Summary

* We are developing system software to
integrate QPU’s with modern scientific
workflows for HPC

« We are evaluating when QPU’s can
accelerate this work and when usage
warrants integration

* The rise of commercial QPU’s is likely to
lead to many new ideas and applications

* Verifying the benefits of quantum
computing is become increasingly
necessary for science

Gate Model Computing Adiabatic Model Computing

Scaffold ProjectQ pyQuil QMASM ToQ QuellE

XACC - Heterogeneous CPU-QPU
Programming Model

¥ OAK RIDGE

- National Laboratory



The End

%OAK RIDGE

National Laboratory




