SR'AOLY

R T Tl - 1R8IV Re

Ali Bavadi-Abhart

e e

c.:. - -___-_
_nn“. __“ ﬂqn‘.ﬁuuuﬂ__' _
==
i “mm \\&“_——___u-_mln-_._
el = AT,
ol _ (u_m_
.“m. .__m - -n“n“n“uﬂnlu-r-
s __.-._.ll e

SIS

(

__m ’ —_— hNL :_

o /g ﬂ e

- _‘ ..__‘..__-—_”

T __
__i S -__,_Ll-_-}

_— IR

)
)3
([|
__l.
{
— e
__I.
__ L)
U
[
S|
Il
il

__, \

History of Quantum Computing

1935 1964 1970 1980 Discovery of

O O @ @ topological

The EPR Paradox Bell's Inequality Birth of quantum First conference on physics 1982 quantum order
information theory of computation
co-hosted by MIT and IBM

1984

Experimentally Quantum

factoring 15 1997 1996 1995 1994 1993 cryptography
(IBM) ~ - ~ A (IBM)
U @ |\ J
2001 Topological ~ DiVincenzo Criteria for ~Quantum error Shor’s Factoring Quantum
codes building a quantum correction Algorithm teleportation (IBM)
computer (IBM)
Circuit QED is
2004 demonstrated
2007 2012 2015 2016 2017
M\ O\ M) N I
O @ @ @ g
The transmon Coherence time Demonstrate IBM Q Experience IBM launches commercial

superconducting qubit improvement (IBM) [[2,0,2]] code (IBM) Launched universal quantum computing

IBM Q Experience

80K
Unique Users

3 Million
Experiments Run

70
Scientific Papers

Switzetland

T Lieihent

Antarctica

The [BM Quantum Experence has attracted an enthu
siastic international following. Here's a sampling of the
activities - from experiments and courses to plenary
sessions = built around our 5-qubit machine.

Australia

& Universities with multiple Quantum Experince wsers

Countries with active Quantum Experience users

Mo active Quantum Experience users

From Quantum Experience to Quantum Programs

Quantum Developers

) AR

{o o] F 1

/| E i

o N/ o

Translate & Optimize v . -
s W 15
U LA

github.com/QISKit/qiskit-sdk-py/

Q
O
C
Q
=
Q
o
X
L
o
>
o
—

-
-
.
.

Redundant

[| User Abstraction Levels
- QISKit Components

2",

i; LI
—
?=__===;:¥

0.0
0.0,
0.0

true
@.016975

592653589793
ams": [
"time_taken": 0.0013900000000000002": [
"measure”,
"
"
'l‘

A
000,

)
}
1

=
"status"
"success”

name
seed"

W
4
=]
&=
W

}

==
"status": "COMPLETED",

"success": true,

"time_taken":

[z
1

Algorithm
[
Qobj

{
_state”
1.0,
0.0
0.9,
0.0

"local_gasm_simulator_cpp",
L

"bell",
quantum
[
]
L
1

[

ng

"backend" :
result”

rc

p-
nign

{
,.i| _m._:..
"-*#*U*"

Map to connectivity graph

OpenPulse

QISKit Architecture

Libraries
OpenQASM

Challenges for near-term quantum
computing

1. Don’t have many qubits

2. Can’t do many gates

Gate error: gates are imperfect

Relaxation: qubits do not retain state for long

Bernstein-Vazirani Algorithm*

Input (query)

xn_1 eee x1 xo

Secret Bitstring Si1 S, So

Output (result)
—p Ln—18n—1 D ... D T181 D TgSo

the
O'RRACLE /x:1o .00 (277)

Optimal | X=01 ..00 (272

classical < >N tries
strategy: |

*E. Bernstein & U. Vazirani, STOC, 93 X=00 ..01

BernSte|n'VaZ|ran| SOIUtlon Wherever there’s CNOT (i.e. the secret

bitstring has a "'1"), phase kickback
puts that control qubit in state |1>.

IT|IT|T|I |

IT|IT |||
|

B CAEtorsand-the Role of Software

Device

l90)
. - Correct
Programmed Circuit |q1) ¢ 08
- - 2) .‘ . answer
|90) H] HEF a3) H
|q1) H] Ht a4) :
|92) H Hr
|g3) H Hr
) {XHH O H] Good
Compiled
Circuit #1
1
0.8
0.6
Bad Correct answer
Backend: ibmqx4 (5 Qubits) Compiled 04 indistinguishable from noise
Circuit #2 02
llllllll-l-l-lll
|qO>H D D O D O DO & O D
lg1) 4 H O NS SIS
lg2) - H H
las) 1 H H
q4) X‘IE\ H

QISKIit
Live Demo

Available here:

https://github.com/ajavadia/giskit-sdk-py/blob/Demo/demo/Relaxation%20Demo.ipynb

Find qubit relaxation rate by running

circuits

) 1)
l90) HX H—1-A— 1 920
o) : : a3 0: 80
[90) 71X A 1: 845
o & 0: 155
l90) 4 X —AF 1: 717
& B 0: 283
[90) X A

0 o—

1: 638
0: 362

1. Put qubit in excited state and
wait variable amounts of
time, then measure.

2. Repeat each circuit many times
(e.g. 1000 shots) to approximate
probability of unwanted | 0> state
in each.

3. Find relaxation rate by fitting
an exponential decay curve to the
data.

Long-Term Road to Fault-Tolerant QC

Need automated tools to optimize in this
design space & choose best design.

Best Design Has Minimum Resource Usage

time
[w] —1—
R

(7] =
= | H I T
2 & P—b
=
o <5 <5

D c|>!Tlo .

[H]

Main|Boeffimids:

1) Hoyv-rRiastyenedetareesd(qoblifi hivrfe) @G usiysiem
for a patekighar design?

2) To whenexvé fitrsbtotbeyrbim e Puilrszabs?

3) WHaa pptivathest disigrnetottmatogieg many?

logical optimizations

physical optimizations

AL

~
SR
NS

i

)
_

N

\(qubits I time j
v

Resources

github.com/epiqc/ScaffCC/

10N

Space Overhead of Error Correct

Hole-Based

Plaquette-Based

|

|

- Uses more physical qubits.

+ Uses fewer physical qubits.

pESEN

o/__QAQ/_O\NIO\a/ﬁ\Q_
AN
Yo (Yo (e (e
NN e N
o T eflRe e
(Yo (Y 8O e (e
AR
e e e Se T e

2ONZNEAONIZN
S _0/ AN 0

_. .__./”\./”_./.
ey e lSely
P\ #:\N 7\ #:N\
el Te ol e
N g\ P\ 7/
o ollRe e
G~
/._1_/&\ I/.\ |/.\ &
A\ AN N
e e e e e

Time Overhead of Error Correction

Plaquette-Based: 2-step communication

= Qubits slowly move close to each other to interact.
+ EPRs are decoupled from data: can be pretetched.

Step 1:
Distribute /
EPR Pair Communication
Source
Prepare Teleport Channel
EPR Established
Pair
Step 2

_‘eleport

Communication
Destination

Hole-Based: 1-step communication

+ Braids move fast: n hops per cycle.

= Braids can’t be pre-fetched.

Communication
Destination

Braid

time

Communicatio
Source

space

Application Dictates Code Favorability

Error Correction Communication Space Time Pre-fetchable?
Type Method (Qubits) (Latency)
Plaquette-Based | Teleportations Low High Yes
Hole-Based Braids High Low No cross-over.

. 8 1 Plaquette-Based point 1 Hole-Based
Cross-over point: 6 Favorable : Favorable
The computation size at which hole- | !
based has better (lower) space x 4 - !
time, compared to plaquette-based. 2 !

0

Cross-over point occurs much
later for parallel apps:
Plaquette-based code stays better
for longer. Due to ability to schedule
EPR pre-distribution around
congestion.

o o o P P A A b 0 AP b 2P

cross-over
point

——qubits

Normalized Resource Usage
Hole- Relative to Plaquette-Based Baseline

Tools are needed for these ~e-time

insights:
Much of prior work had assumed
hole-based to be better by default.

o N b~ O o
|

»@(00 »@(0’1, xfc"gb‘ ng{g@ xg’xg% ,\.@‘xg)\g}(x} »\,@Ab‘)\g}xx6 '\‘QA% '\S"X’)D xg/x’)ﬂ/ \/Vw

Computation Size

Co-Design ot Applications, QEC

Codes, Devices

Co-design for Maximum Benefit:

+ Very different technologies,
with different constraints

+ Very different applications,
with different characteristics

+ Very different Error Correction
Codes, with different overheads

Size of Computation (1/P,)

1.E+20

1.E+18

1.E+16

1.E+14

1.E+12

1.E+10

1.E+08

1.E+06

1.E+04

1.E+02

1.E+00

~ Hole-Based — GSE
~ Favorable — SQ
~ < /' -==SHA-1
SN N — IM_Semi_lnlined
IR N IM_Fully_Inlined
- SN Fully_tniine
~ ~ N
~ - NS —
—_ ~ < — L T — Parallel app
_— -~ e —
N~ . \ N . — — —_—
~ ~ < T~ -
° : _—
/ ~ C— \\ - -
- —
C —— . ~ ~—
Plaquette-Based == —_—
1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Physical Error Rate (P)

Javadi-Abhari et al. MICRO 17

Get Involved!

@ qiskit.org

github.com/qiskit/qiskit-tutorial

[
)
m
-

\
-t"‘l’

github.com/qiskit

Ul
i'.m s

f
‘ll
\

I
([

giskit.slack.com

IBM Q Awards Developer Challenge

Awards

X0
I \

