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History of Quantum Computing
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IBM Q Experience

80K
Unique Users

3 Million
Experiments Run

70
Scientific Papers

Switzetland

T Lieihent

Antarctica

The [BM Quantum Experence has attracted an enthu
siastic international following. Here's a sampling of the
activities - from experiments and courses to plenary
sessions = built around our 5-qubit machine.

Australia

& Universities with multiple Quantum Experince wsers

Countries with active Quantum Experience users

Mo active Quantum Experience users




From Quantum Experience to Quantum Programs

Quantum Developers
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Challenges for near-term quantum
computing

1. Don’t have many qubits

2. Can’t do many gates

Gate error: gates are imperfect

Relaxation: qubits do not retain state for long



Bernstein-Vazirani Algorithm*

Input (query)

xn_1 eee x1 xo

Secret Bitstring Si1 S, So

Output (result)
—p Ln—18n—1 D ... D T181 D TgSo

the
O'RRACLE /x:1o .00 (277 )

Optimal | X=01 ..00 (272

classical < >N tries
strategy: |

*E. Bernstein & U. Vazirani, STOC, 93 X=00 ..01



BernSte|n'VaZ|ran| SOIUtlon Wherever there’s CNOT (i.e. the secret

bitstring has a "'1"), phase kickback
puts that control qubit in state |1>.
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B CAEtorsand-the Role of Software

Device

l90)
. - Correct
Programmed Circuit |q1) ¢ 08
- - 2) .‘ . answer
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Compiled
Circuit #1
1
0.8
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Bad Correct answer
Backend: ibmqx4 (5 Qubits) Compiled 04 indistinguishable from noise
Circuit #2 02
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QISKIit
Live Demo

Available here:

https://github.com/ajavadia/giskit-sdk-py/blob/Demo/demo/Relaxation%20Demo.ipynb




Find qubit relaxation rate by running

circuits

) 1)
l90) HX H—1-A— 1 920
o) : : a3 0: 80
[90) 71X A 1: 845
o & 0: 155
l90) 4 X —AF 1: 717
& B 0: 283
[90) X A

0 o—

1: 638
0: 362

1. Put qubit in excited state and
wait variable amounts of
time, then measure.

2. Repeat each circuit many times
(e.g. 1000 shots) to approximate
probability of unwanted | 0> state
in each.

3. Find relaxation rate by fitting
an exponential decay curve to the
data.



Long-Term Road to Fault-Tolerant QC

Need automated tools to optimize in this
design space & choose best design.




Best Design Has Minimum Resource Usage
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Resources

github.com/epiqc/ScaffCC/
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Space Overhead of Error Correct

Hole-Based

Plaquette-Based

|

|

- Uses more physical qubits.

+ Uses fewer physical qubits.
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Time Overhead of Error Correction

Plaquette-Based: 2-step communication

= Qubits slowly move close to each other to interact.
+ EPRs are decoupled from data: can be pretetched.

Step 1:
Distribute /
EPR Pair Communication
Source
Prepare Teleport Channel
EPR Established
Pair
Step 2

\_‘eleport

Communication
Destination

Hole-Based: 1-step communication

+ Braids move fast: n hops per cycle.

= Braids can’t be pre-fetched.

Communication
Destination

Braid

time

Communicatio
Source

space



Application Dictates Code Favorability

Error Correction Communication  Space Time Pre-fetchable?
Type Method (Qubits) (Latency)
Plaquette-Based | Teleportations Low High Yes
Hole-Based Braids High Low No cross-over.

. 8 1 Plaquette-Based point 1 Hole-Based
Cross-over point: 6 Favorable : Favorable
The computation size at which hole- | !
based has better (lower) space x 4 - !
time, compared to plaquette-based. 2 !

0

Cross-over point occurs much
later for parallel apps:
Plaquette-based code stays better
for longer. Due to ability to schedule
EPR pre-distribution around
congestion.

o o o P P A A b 0 AP b 2P

cross-over
point

——qubits

Normalized Resource Usage
Hole- Relative to Plaquette-Based Baseline

Tools are needed for these ~e-time

insights:
Much of prior work had assumed
hole-based to be better by default.
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Co-Design ot Applications, QEC

Codes, Devices

Co-design for Maximum Benefit:

+ Very different technologies,
with different constraints

+ Very different applications,
with different characteristics

+ Very different Error Correction
Codes, with different overheads

Size of Computation (1/P,)
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Get Involved!

@ qiskit.org

github.com/qiskit/qiskit-tutorial
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giskit.slack.com

IBM Q Awards Developer Challenge

Awards
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