

History of Quantum Computing

From Quantum Experience to Quantum Programs

Quantum Developers

github.com/QISKit/qiskit-sdk-py/

API

Real Devices

IBM Q Experience

Simulators

Laboratory

Challenges for near-term quantum computing

- 1. Don't have many qubits
- 2. Can't do many gates

Gate error: gates are imperfect

Relaxation: qubits do not retain state for long

Bernstein-Vazirani Algorithm*

*E. Bernstein & U. Vazirani, STOC, 93

Bernstein-Vazirani Solution

Wherever there's CNOT (i.e. the secret bitstring has a `1`), phase kickback puts that control qubit in state |1>.

Awards t dive the relative Role of Software

QISKit Live Demo

Available here:

https://github.com/ajavadia/qiskit-sdk-py/blob/Demo/demo/Relaxation%20Demo.ipynb

Find qubit relaxation rate by running circuits

- 1. Put qubit in excited state and wait *variable amounts of time,* then measure.
- 2. Repeat each circuit many times (e.g. 1000 shots) to approximate probability of unwanted |0> state in each.
- 3. Find relaxation rate by fitting an exponential decay curve to the data.

Long-Term Road to Fault-Tolerant QC

Best Design Has Minimum Resource Usage

Main & certified ds:

- 1) How-rationstyened ottor cersol (took blift of this requires the most a parties ig har design?
- 2) To whomexoffitrstatotexambien of billhoise de?
- 3) What inptinations, obliviers electrologies many?

github.com/epiqc/ScaffCC/

Space Overhead of Error Correction

Time Overhead of Error Correction

Application Dictates Code Favorability

Error Correction Type	Communication Method	Space (Qubits)	Time (Latency)	Pre-fetchable?
Plaquette-Based	Teleportations	Low	High	Yes
Hole-Based	Braids	High	Low	No

Cross-over point:

The computation size at which hole-based has better (lower) *space x time,* compared to plaquette-based.

Cross-over point occurs much later for parallel apps:

Plaquette-based code stays better for longer. Due to ability to schedule EPR pre-distribution around congestion.

<u>Tools are needed for these insights:</u>

Much of prior work had assumed hole-based to be better by default.

Co-Design of Applications, QEC Codes, Devices

Co-design for Maximum Benefit:

- + Very different technologies, with different constraints
- + Very different applications, with different characteristics
- + Very different Error Correction Codes, with different overheads

Javadi-Abhari et al. MICRO 17

Get Involved!

qiskit.org

Explore

github.com/qiskit/qiskit-tutorial

Learn more

github.com/qiskit

Contribute code

qiskit.slack.com

Help define

IBM Q Awards Developer Challenge

Win \$5000 in prizes
Deadline: 15th May 2018