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Main Topic to be Addressed

• What problems can quantum computers solve fast?

6/8/2017

– What “flavor” of quantum are we referring to?

– What exactly is a computer?

– What do we mean by solve?

– What is considered fast in this context?
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What is a Computer?

• Mathematical abstraction: a 
Turing machine
– ܯ ൌ ܳ, Γ, ܾ, Σ, ,ߜ ,଴ݍ ܨ
– All states, all symbols, blank symbol, 

input symbols, transition function, 
initial state, and final states

– All of the preceding sets are finite, but 
the memory (“tape”) on which they 
operate is infinite

• Transition function
– Maps {current state, symbol read} to 

{new state, symbol to write, left/right}
– Example: “If you’re in state A and you 

see a 0, then write a 1, move to the 
left, and enter state B”
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A. M. Turing, “On Computable Numbers, with an 
Application to the Entscheidungsproblem”.  
Proceedings of the London Mathematical Society, 
12 November 1936.
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What Else is a Computer?

• Nondeterministic Turing machine
– Replace the transition function with a transition relation
– Contradictions are allowed
– Example: “If you’re in state A and you see a 0, then simultaneously  write a 1, 

move to the left, and enter state B;  write a 0, move to the right, and enter state C; 
and  write a 1, move to the right, and enter state B.”

– At each step, an oracle suggests the best path to take (not realistic, obviously)
• Quantum Turing machine

– Same 7-tuple as in the base Turing machine
– ܯ ൌ ܳ, Γ, ܾ, Σ, ,ߜ ,଴ݍ ܨ
– But…set of states is a Hilbert space; alphabet is a (different) Hilbert space; blank 

symbol is a zero vector; transition function is a set of unitary matrices; initial state 
can be in a superposition of states; final state is a subspace of the Hilbert space

– No change to input/output symbols; those stay classical
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Introduction to Complexity Theory

• What problems can a computer solve quickly?
• Discuss in terms of asymptotic complexity, not wall-clock time

– Ignore constants and all but the leading term
– For input of size n, O(n) can mean 3n seconds or 5n+2 log n+3/n+20 hours; it 

doesn’t matter
– Polynomial time, O(nk) for any k, is considered good (efficiently solvable), even if an 

input of size n takes 1000n20 years to complete
– Superpolynomial time—most commonly exponential time, O(kn) for k>1—is 

considered bad (intractable), even if an input of size n completes in only 2n

femtoseconds
• Categorize problems into complexity classes

– Goal: Determine which complexity classes are subsets or proper subsets of which 
other classes (i.e., representing, respectively, “no harder” or “easier” problems)

– Approach is typically based on reductions: proofs that an efficient solution to a 
problem in one class implies an efficient solution to all problems in another class

• Typically focus on decision problems
– Output is either “yes” or “no”
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Venn Diagram of Common Complexity Classes

6/8/2017

P – “Easy” decision problems
– Can be solved in polynomial time on a 

deterministic Turing machine
– Example: Does a given matrix have an 

eigenvalue equal to 1.2?

NP-hard

NP-complete
– “Hard” decision problems
– Can be solved in polynomial time on a 

nondeterministic Turing machine
– Solutions can be verified in polynomial time 

on a deterministic Turing machine
– Example: Does a given integer have a prime 

factor whose last digit is 3?

– Problems at least as hard as those in NP
– Not necessarily decision problems
– Example: Given a weighted graph, what is 

the shortest-length Hamiltonian path?

– Hardest of the problems in NP
– Example: Given a set of integers, is there a 

subset whose sum is 0?
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Quantum Complexity Classes
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Can be solved in polynomial time on a quantum Turing machine

Cannot be solved in polynomial time on a quantum Turing machine
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What Do We Know?

• Short answer: Almost nothing
• P vs. NP

– We know that P  NP, but we don’t know whether
– P = NP or P ≠ NP; conjectured that P ≠ NP
– $1M prize from the Clay Mathematics Institute if you figure it out

• NP-intermediate vs. NP-complete
– (NP-intermediate are the set of problems in NP but not in NP-complete)
– We know that NP-intermediate  NP-complete, but we don’t know if they’re equal
– Implication: If NP-intermediate ≠ NP-complete, then factoring (NP-intermediate) may 

in fact be an easy problem, but we just haven’t found a good classical algorithm yet
• P vs. BQP

– We know that P  BQP, but we don’t know whether P = BQP or P ≠ BQP
– Implication: If P = BQP, then quantum computers offer no substantial 

(i.e., superpolynomial) performance advantage over classical computers
• NP-complete vs. BQP

– We don’t know relation of BQP to NP-complete; conjectured that BQP  NP-complete
– Implication: Believed that quantum computers cannot solve NP-complete problems in 

polynomial time
6/8/2017
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It’s Not All Doom and Gloom

• Sure, quantum computers probably can’t solve NP-complete problems 
in polynomial time

• Still, even a polynomial-time improvement is better than nothing
• Grover’s algorithm

– Find an item in an unordered list
– ܱሺ݊ሻ → ܱሺ ݊ሻ

• Shor’s algorithm
– Factor an integer into primes (NP, but not NP-complete)

– ܱሺ2 ௡య
ሻ → ܱሺሺlog ݊ሻଷሻ

6/8/2017
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Aside: Quantum Algorithms (Circuit Model)

• Key concepts
– N classical bits go in, N classical bits come out
– Can operate on all 2N possibilities in between
– Requirement: Computation must be reversible (not a big deal in practice)
– Main challenge: You get only one measurement; how do you know to measure the 

answer you’re looking for?
– High-level approach: Quantum states based on complex-valued probability 

amplitudes, not probabilities—can sum to 0 to make a possibility go away
• Very difficult in practice

– Only 55 algorithms known to date

– Based on only a handful of building blocks
– Each requires substantial cleverness; not much in the way of a standard approach

6/8/2017

quantum algorithm zoo
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Grover’s Algorithm

• Which box contains the prize?

– Classically, must open all 8 boxes in the worst case
• Let’s see how we can use quantum effects to do better than that…
• Given

– A power-of-two number of boxes
– A guarantee that exactly one box contains the prize
– An operator ܷఠ that, given a box number |ۧݔ, flips the probability amplitude iff the 

box contains the prize (i.e., ܷఠ ݔ ൌ െ|ۧݔ for ݔ ൌ ߱ and ܷఠ ݔ ൌ ۧݔ| for ݔ ് ߱)
• Define the Grover diffusion operator as follows

– ݏ ≡ ଵ
ே
∑ ேିଵۧݔ|
௜ୀ଴ (i.e., the equal superposition of all states)

– ௦ܷ ≡ |ݏۦۧݏ|2 െ ܫ (the Grover diffusion operator)

6/8/2017
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Grover’s Algorithm (cont.)

• The basic algorithm is fairly straightforward to apply:
– Put each of the N qubits in a superposition of |0ۧ and |1ۧ
– For ܰ iterations

• Apply ܷఠ to the state
• Apply ௦ܷ to the state

• How does that work?
– Gradually shifts the probability amplitude to qubit ω from all the other qubits
– When we measure, we’ll get a result of ω with near certainty

6/8/2017
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Shor’s Algorithm

• Factor 1,274,093,332,123,426,680,869 into a product of two primes
– Okay, it’s 135,763,451,261×9,384,656,329

• Observations
– Given that N is the product of two primes, p and q
– Given some a that is divisible by neither p nor q
– Then the sequence {a1 mod N, a2 mod N, a3 mod N, a4 mod N, a5 mod N, …} will 

repeat every r elements (the sequence’s period)
– As Euler discovered (~1760), r always divides (p−1) (q−1)

• Example
– Let a be 2 and N be 15 (=3×5)
– Then ax mod N = {2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1 …} so r is 4
– Lo and behold, 4 divides (3−1) (5−1)=8

• Approach
– Once we know the period, r, it’s not too hard to find N’s prime factors p and q
– Unfortunately, finding r is extremely time-consuming…for a classical computer

6/8/2017



Shor’s Algorithm (cont.)

• Use a quantum Fourier transform
(QFT) to find the period

• All else is classical
• Randomized algorithm with proof 

of timely termination
Choose a

random a < N

gcd(a, N)=1?

a and N/a are
factors of N

r odd?

ar/2 ≡ -1 mod N?

gcd(ar/2+1, N) and gcd(ar/2-1, N) are factors of N

N is the number
to factor

Find r, the period of f(x) = ax mod N

NY

Y

N
Y

N
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Outline

• Performance potential of quantum computing
• Quantum annealing
• Case study: D-Wave quantum annealers
• How to program a quantum annealer
• Parting thoughts
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Simulated Annealing

• Classical (and classic) optimization approach
• Find the coordinates of the minimum value in an energy landscape
• Conceptual approach

– Drop a bunch of rubber balls on the landscape, evaluating the function wherever 
they hit

– Hope that one of the balls will bounce and roll downhill to the global minimum
• Challenge: Commonly get stuck in a local minimum

6/8/2017



• Consider adding a time-dependent transverse field to a 2-local Ising
Hamiltonian:

• Implication of the adiabatic theorem
– If we gradually decrease the amplitude of the transverse field, Γሺݐሻ, from a very large 

value to 0, we should drive the system into the ground state of ࣢଴

• The real benefit: quantum tunneling

࣢ ݐ ൌ െ෍ ෍ ௝௭ߪ௜௭ߪ௜,௝ܬ
ேିଵ

௝ୀ௜ାଵ

ேିଶ

௜ୀ଴

െ ෍ ݄௜ߪ௜௭
ேିଵ

௜ୀ଴

െ Γ ݐ ෍ ௜௫ߪ
ேିଵ

௜ୀ଴

Los Alamos National Laboratory

Quantum Mechanics to the Rescue
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Quantum Tunneling

• Introduced by the Γሺݐሻ (transverse) term
• Enables jumping from one classical state (eigenstate of ࣢଴) to another

– Decreases likelihood of getting stuck in a local minimum
• Unlike simulated annealing, width of energy barrier is important, but 

height is not

6/8/2017
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Time Evolution

• If purely adiabatic and sufficiently slow, the system remains in the 
ground state as it moves from the initial, “generic” Hamiltonian to the 
problem Hamiltonian

• D-Wave’s initial state
– Ground state (not degenerate): |൅ۧ|൅ۧ|൅ۧ⋯ |൅ۧ

– 1st excited state ( ܰ1 -way degenerate): െ ൅ ൅ ⋯ ൅ , |൅ۧ|െۧ|൅ۧ⋯ |൅ۧ, 
൅ ൅ െ ⋯ ൅ , … |൅ۧ|൅ۧ|൅ۧ⋯ |െۧ

– 2nd excited state ( ܰ2 -way degenerate): െ െ ൅ ⋯ ൅ , |െۧ|൅ۧ|െۧ⋯ |൅ۧ, 
൅ െ െ ⋯ ൅ , … |൅ۧ|൅ۧ|൅ۧ⋯ |െۧ

– etc.

6/8/2017
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A Brief Aside

• What we just saw is adiabatic quantum optimization
– Optimization problem is to find the ߪ௜௭ ∈ ሼെ1,൅1ሽ that minimize ࣢଴

• A more powerful variation is adiabatic quantum computing

– “[A]diabatic quantum computation (error free) is equivalent to the quantum circuit 
model (error free). So adiabatic quantum computers (error free) are quantum 
computers (error free) in the most traditional sense.”

— Dave Bacon, 27Feb2007
• In this talk we’ll be considering only adiabatic quantum optimization

– That’s all that’s been built to date (at least at large scale)
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࣢௓௓௑௑ ൌ ෍ ෍ ௝௭ߪ௜௭ߪ௜,௝ܬ ൅ ෍ ݄௜ߪ௜௭
ேିଵ

௜ୀ଴

൅ ෍ ෍ ௝௫ߪ௜௫ߪ௜,௝ܭ ൅ ෍ Δ௜ߪ௜௫
ேିଵ

௜ୀ଴

ேିଵ

௝ୀ௜ାଵ

ேିଶ

௜ୀ଴

ேିଵ

௝ୀ௜ାଵ

ேିଶ

௜ୀ଴



Los Alamos National Laboratory

Annealing Time

• From a few slides back:
– If we gradually decrease the amplitude of the transverse field, Γሺݐሻ, from a very large 

value to 0, we should drive the system into the ground state of ࣢଴

• What does “gradually” mean?
– (Explanation from Farhi and Gutmann)
– ࣢ ݐ encodes our problem
– Want to evolve the system according to Schrödinger, ݅ ೏೏೟ ߰ ൌ ࣢ ݐ ߰
– Given that ࣢ሺݐሻ has one eigenvalue ܧ ് 0 and the rest 0, find the eigenvector ݓ

with eigenvector ܧ
– Assume we’re given an orthonormal basis ሼ|ܽۧሽ with ܽ ൌ 1,… ,ܰ and that ݓ is one 

of those ܰ basis vectors

– Let ݏ ൌ ଵ
ே
∑ |ܽۧே
௔ୀଵ

– We consider the Hamiltonian ࣢ ൌ ܧ ݓ ݓ ൅ ܧ ݏ ݏ (i.e., problem + driver)
– Let ݔ ൌ ۧݓ|ݏۦ
– Then, omitting a lot of math, we wind up with the probability at time ݐ of finding the 

state ݓ being Pr ݐ ൌ sinଶሺݐݔܧሻ ൅ ଶݔ cosଶሺݐݔܧሻ
– To find state ݓ with (near) certainty we need to run for time ݐ௠ ൌ గ

ଶா௫

6/8/2017
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Determining the Annealing Time

• Unfortunately, we don’t in 
general know how long we need 
to run (i.e., we can’t quickly 
compute ݐ௠)

• Function of the minimum gap 
between the two smallest 
eigenvalues at any point during 
the Hamiltonian’s time evolution

• Gap can get quite small
• Grover’s search (right)

– Find an n-bit number such that

࣢௉ ݖ ൌ ቊ|ۧݖ if	ݖ ് ݓ
0 if	ݖ ൌ ݓ

for some black-box Hamiltonian ࣢௉

– Here, ݃୫୧୬ ≃ 2ଵି
೙
మ for ݊ bits

– Implication: Solution time is ܱሺ2௡ሻ—
no better than classical brute force

6/8/2017
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Annealing Time: Discussion

The bad
• Very difficult to analyze an algorithm’s computational complexity

– Need to know the gap between the ground state and first excited state, which can be 
costly to compute

– In contrast, circuit-model algorithms tend to be more straightforward to analyze
• Unknown if quantum annealing can outperform classical

– If gap always shrinks exponentially then no
– (Known that in adiabatic quantum computing the gap shrinks polynomially)

6/8/2017
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Annealing Time: Discussion (cont.)

The good
• Constants do matter

– If the gap is such that a correct answer is expected only once every million anneals, 
and an anneal takes 5µs, that’s still only 5s to get a correct answer—may be good 
enough

– On current systems, the gap scaling may be less of a problem than the number of 
available qubits

• We may be able to (classically) patch the output to get to the ground 
state
– Hill climbing or other such approaches may help get quickly from a near-ground-

state solution into the ground state
• We may not even need the exact ground state

– For many optimization problems, “good and fast” may be preferable to “perfect but 
slow”

6/8/2017
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Outline

• Performance potential of quantum computing
• Quantum annealing
• Case study: D-Wave quantum annealers
• How to program a quantum annealer
• Parting thoughts
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D-Wave’s Hamiltonian

• Problem Hamiltonian (longitudinal field):

– The programmer specifies the ܬ௜,௝ and ݄௜, and the system solves for the ߪ௜௭

– ௜௭ߪ ∈ ሼെ1,൅1ሽ
– Nominally, ܬ௜,௝ ∈ Թ and ݄௜ ∈ Թ, but the hardware limits these to a small set of 

distinguishable values in the ranges ܬ௜,௝ ∈ ሾെ1,൅1ሿ and ݄௜ ∈ ሾെ2,൅2ሿ
• Application of the time-dependent transverse field:

– Programmer specifies the total annealing time, ܶ ∈ 5,2000 	μs
– ݏ ൌ ܶ/ݐ (i.e., time normalized to [0, 1])
– ሻݏሺߝ and Δሺݏሻ are scaling parameters (not previously user-controllable but most 

recent hardware provides a modicum of control over the shape)

࣢௉ ൌ ෍ ෍ ௝௭ߪ௜௭ߪ௜,௝ܬ ൅ ෍ ݄௜ߪ௜௭
ேିଵ

௜ୀ଴

ேିଵ

௝ୀ௜ାଵ

ேିଶ

௜ୀ଴

࣢ௌ ݏ ൌ
ߝ ݏ
2 ࣢௉ െ

Δ ݏ
2 ෍ ௜௫ߪ

ேିଵ

௜ୀ଴

Note:
This is a classical 2-local 
Ising Hamiltonian
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D-Wave’s Annealing Schedule
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Building Block: The Unit Cell

• Logical topology
– 8 qubits arranged in a bipartite graph

• Physical implementation
– Based on rf-SQUIDs
– Flux qubits are long loops of 

superconducting wire interrupted by a 
set of Josephson junctions (weak 
links in superconductivity)

– “Supercurrent” of Cooper pairs of 
electrons, condensed to a 
superconducting condensate, flows 
through the wires

– Large ensemble of these pairs 
behaves as a single quantum state 
with net positive or net negative flux

– …or a superposition of the two (with 
tunneling)

– Entanglement introduced at qubit 
intersections

• Logical view

• Physical view

6/8/2017
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A Complete Chip

• Logical view
– “Chimera graph”: 16×16 unit-cell grid
– Qubits 0–3 couple to north/south 

neighbors; 4–7 to east/west
– Inevitably incomplete

• Physical view
– Chip is about the size of a small 

fingernail
– Can even make out unit cells with the 

naked eye

6/8/2017
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Cooling

• Chip must be kept extremely cold 
for the macroscopic circuit to 
behave like a two-level (qubit) 
system
– Much below the superconducting 

transition temperature (9000 mK for 
niobium)

• Dilution refrigerator
• Nominally runs at 15 mK
• LANL’s D-Wave 2X happens to 

run at 10.45 mK
– That’s 0.01C above absolute zero 
– For comparison, interstellar space is 

far warmer: 2700 mK

6/8/2017
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What You Actually See

• A big, black box
– 10’×10’×12’ (3m×3m×3.7m)
– Mostly empty space
– Radiation shielding, dilution 

refrigerator, chip + enclosure, cabling, 
tubing

– LANL also had to add a concrete slab 
underneath to reduce vibration

• Support logic
– Nondescript classical computers
– Send/receive network requests, 

communicate with the chip, etc.

6/27/2017
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Deviation from the Theoretical Model

• No all-to-all connectivity
– Each qubit can be directly coupled to at most 6 other qubits
– Many qubits and couplers are absent (in an irregular, installation-specific pattern)

• Not running at absolute zero
• Not running in a perfect vacuum
• No error correction
• We can therefore think of our Hamiltonian as being

• in which ࣢?ሺ࢙ሻ encapsulates the interaction with the environment
– That is, all the things we don’t know and can’t practically measure
– Nonlinear and varies from run to run

• Also, it takes time to set up a problem and get the results back
– Before: reset + programming + post-programming thermalization
– After: readout
– Currently, these dominate the annealing time by many orders of magnitude
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