
QSAGE(1) User Commands QSAGE(1)

NAME

qsage – C code generator for simplified access to qsage library

SYNOPSIS

qsage \

 –p program-name \

 –i initialization-function \

 –o objective-function \

 –f finalization-function \

 [-b {debug|optimize}] [-a argspec] [-v] [-s] \

 C-source-1.c ... \

 C-object-1.o ...

program-name -t –o –v –E [additional arguments]

DESCRIPTION

qsage simplifies the task of writing C code to access the
sapi_solveQsage(...) function from the SAPI library. In its
default mode, qsage generates C source files and compiles them
with user-provided C to create an executable. When used as a
code generator, qsage emits C source files that can be compiled
and linked with user-provided C to create a complete executable.

 [-a argspec]

The generated executable usually requires command line
arguments to control its behavior. Each –a argument to
qsage defines a command line argument which may be passed
to the generated executable. The required argspec value
following each –a specifies four pieces of information:

1) command option letter
2) variable type
3) variable name
4) variable default value

Variable type must be either integer, double or string.
Variable name must be a legal C variable name. Variable
default value specifies the value that the C variable will
have if no corresponding command line argument is used.

All four values must be concatenated with a colon (:)
separator. This combination of –a and an argspec

 -a n:integer:N:0

causes the generated executable to look for a command line
argument –n which would be followed by an integer value.
This command line argument would be parsed and placed into
a variable named N. If the –n command line argument is not
present, then the N variable will have value 0.

Multiple –a arguments can be passed to qsage. Each
variable defined in this way is at file scope and may be
used anywhere in the user-provided C program files.

-b {debug|optimize}

The optional build flag (-b) controls the type of
compilation when qsage is used to generate an executable.
If –b debug is specified, the compiled code will retain
symbol table information and so can be easily debugged. If
–b optimize is specified, the compilation step will use
optimization.

When qsage is used to generate C source files, the –b
option controls the compilation commands in the
compile.bash script.

If multiple –b options appear, all but the last one are
ignored.

-i initialization-function

-o objective-function

-f finalization-function

These three required arguments allow the user to specify
function names in the C program. The initialization-
function is called once after parsing command line
arguments. Any logic necessary to prepare for evaluation
of the objective function must be included in the
initialization-function. The objective-function is called

many times during execution. This is the function which is
minimized by the qsage library routines using the D-Wave
quantum computer. The finalization-function is called once
at the end of execution and usually writes out the argument
which minimizes the objective-function.

The return value from the initialization-function is an
integer which is the number of Boolean variables over which
the objective-function is defined.

 -p program-name

The name of the generated executable is program-name.

-s

This optional argument controls whether qsage stops after
generating source code (if –s is specified) or continues
and generates an executable (if –s is not specified). If
–s is specified, a new subdirectory of the current working
directory is created and the generated source code is put
there. The name of the new subdirectory is the
concatenation of a dot, the program name, and underscore
and a random four-digit numeric string. A shell script
named compile.bash is also generated in the new
subdirectory which contains compile and link commands to
build the final executable. The name of the new
subdirectory is written in a message on standard output.

 -v

If present, this optional argument enables verbose output
from qsage while it parses arguments. If qsage is invoked
to generate an executable, the –v argument also causes the
value of DWAVE_HOME and the individual compilation and link
commands to be displayed.

In default mode qsage generates an executable named program-name,
whose name is specified via the required –p argument. The
generated executable has several built-in arguments which are
always recognized (see below) as well as custom arguments which
are defined via the –a argspec arguments to qsage. When invoking
program-name the user will specify values for some built-in
arguments followed by custom arguments. The –E option letter
marks the end of the built-in arguments and following it, all
remaining arguments are assumed to be custom.

-t NNN

This sets the timeout value. Program-name will generally
execute until the search terminates at the specified
objective value or until the timeout has been reached.

 -o OOO

 This sets the objective value.

 -v

This turns on verbose output from the sapi_solveQsage(...)
library function.

 -E

This marks the end of the built-in arguments and the start
of the custom arguments.

EXAMPLE

Suppose the user has written a C source file named hadamard.c
which includes definitions for the functions hadamard_init(),
hadamard_obj() and hadamard_final(). Qsage is invoked to
generate an executable named hadamard. Hadamard is invoked with
built-in arguments to determine the target objective value, the
timeout and its verbosity mode. Following these arguments, an
additional custom argument determines the specific search
problem. At run time, the generated executable parses its
command line arguments and then invokes hadamard_init(). The
hadamard_init() function allocates data structures which depend
on values passed via custom arguments. After hadamard_init()
runs, the generated executable calls hadamard_obj() multiple
times. Each invocation of hadamard_obj() evaluates the objective
function once at its argument values. The function
hadamard_final() displays the final result.

To support this calling sequence, invoke qsage with one argument
specifier for the required integer value needed by
hadamard_init(). Use qsage in its default mode by omitting the
optional –s argument. Include the –b debug option to allow for
debugging. Include the three functions mentioned above in a
single C source file named hadamard.c. Invoke qsage as follows:

qsage -p hadamard –b debug –a n:integer:N:0 \

-i hadamard_init -o hadamard_obj -f hadamard_final \

 hadamard.c

The above invocation of qsage creates an executable program named
hadamard. In addition to the built-in command line arguments –t,
-o and –v, the user provides the custom command line argument –n
following the –E argument. The –n argument should be followed by
an integer value. Corresponding to the custom argument is a
single integer variable N in the generated C program.

The prototypes for the initialization, objective and finalization
functions are as follows:

int initialization-function();

double objective-function(const int* state, size_t len);

void finalization-function(const int* state, size_t len);

The return value from the initialization function sets the number
of Boolean variables over which the search takes place. The
objective function should assume that state points to an array of
length len. Each element in the state array contains 0 or 1.
The objective function returns the objective value resulting from
evaluating the objective at the point in search space specified
by its input arguments. The arguments to the finalization
function are the same as those for the objective function. The
finalization function is called once after the search has
terminated. The arguments to the finalization function represent
the point in search space with the minimum objective value found
by qsage, so the finalization function can write out the final
result in whatever format is most convenient.

In addition to any standard include files needed in the C source
files provided to qsage, the following header should also be
included:

 #include "qsage.h"

The file qsage.h is automatically generated by qsage and contains
declarations of the initialization, objective and finalization
function as well as variables corresponding to custom arguments.

The generated executable can be called as follows:

 hadamard –v –t 100 –o 0 –E –n 4

BUGS

Please report bugs to dwsupport@dwavesys.com.

COPYRIGHT

© 2016 D-Wave Systems Inc.

SEE ALSO

Developer Guide for C, Release 2.2, Chapter 8

