
DW(1) User Commands DW(1)

NAME

dw – utility function for interacting with D-Wave System

SYNOPSIS

dw {dw-subcommand} ...

DESCRIPTION

Provides a general-purpose interface for interacting with the D-

Wave System. Manages connections, solvers and workspaces.

Displays geometry data. Builds and executes quantum machine

instructions (QMIs). Embeds QUBOs to create parameterized

quantum machine instructions (PQMIs). Binds and validates PQMIs.

Provides simple constraint to QUBO compilation. Includes a

front-end interface for qbsolv.

Many dw subcommands set and display environment variables used to

access the D-Wave System. These variables are specific to the

current shell and its children. The dw command is implemented

partially via Bash shell functions and thus requires the use of

the Bash shell.

Interactive Bash shells must source the definition of the dw

command from $DWAVE_HOME/bin/dw_setup. Place the following

command in the Bash shell start-up file (for example ~/.bashrc):

 source $DWAVE_HOME/bin/dw_setup

Non-interactive shells (such as ones that are created to execute

shell scripts) must also read the definition of the dw command.

To do this, place this command in the start-up file:

export BASH_ENV=$DWAVE_HOME/bin/dw_setup

This is suitable if no other logic must be included during shell

start-up.

If there is additional logic that must be executed at start-up

time of a non-interactive shell, then all logic must be placed in

a single environment file and the location of that file should be

exported as the value for BASH_ENV. In that case, the command to

source $DWAVE_HOME/bin/dw_setup should be placed into the

environment file.

SUBCOMMANDS

dw convert

File formats and naming conventions changed in moving from qOp

version 2.2 to 2.3. If you have installed a version of qOp prior

to 2.3, then run dw convert to update your existing workspaces.

dw format {file.qmi|file.sol|file.epqmi}

This command will report the format of a file in the current

workspace. For qOp 2.3 (resp. 2.2) the format is "3" (resp.

"2"). The dw format command only works with the three file types

as specified by the suffixes listed above.

dw get ...

Displays the value for one of the following configuration

variables:

connection – dw get connection displays the currently active

connection if one has been set. If there is no current

connection, the available connections as listed in the .dwrc file

are listed and the user can choose to select one of them.

solver – dw get solver displays the currently active solver if

one has been set. If there is no current solver and the

connection has been set, the available solvers are listed and the

user can choose to select one of them.

workspace – dw get workspace displays the currently active

workspace. The top directory of the workspace is located within

$DWAVE_WORKSPACE and its name is given by concatenating

“workspace.” with the workspace name. For example, the 128-qubit

simulator has a workspace at $DWAVE_WORKSPACE/workspace.c4 since

the name of this workspace is “c4”.

env – dw get env displays the values for environment variables

whose values are manipulated by dw. They are:

DW_INTERNAL__WORKSPACE

DW_INTERNAL__CONNECTION

DW_INTERNAL__WSPATH

DW_INTERNAL__HTTPLINK

DW_INTERNAL__HTTPPROXY

DW_INTERNAL__SOLVER

DW_INTERNAL__TOKEN

The DW_INTERNAL__ prefix is stripped from each of these

environment variables before display.

path – dw get path displays the Unix path to the current

workspace directory. The workspace directory is independent of

the current working directory for the shell. The workspace

directory is intended to hold binary file formats for QMI, PQMI

and SOL files as well as other file formats used by dw commands.

These files generally work within a single geometry only and so

workspaces are a simple mechanism for helping to segregate file

formats by geometry.

geometry – dw get geometry displays the current geometry. The

Chimera geometry of the D-Wave System is characterized by three

parameters:

 L – half the number of qubits in the unit cell

 M – number of rows of unit cells in the Chimera grid

 N – number of columns of unit cells in the Chimera grid

For the 128-qubit simulator, these parameters all have the value

4. The total number of qubits and couplers and active qubits and

couplers is also displayed.

qubits – dw get qubits displays a bit mask for the set of all

qubits in the current geometry. The bit mask contains a 1 for

active qubits and 0 for inactive qubits.

couplers – dw get couplers displays a bit mask for the set of all

couplers in the current geometry. The bit mask contains a 1 for

active couplers and 0 for inactive couplers.

Qnnnn – dw get Qnnnn displays connection information for a

particular qubit. The qubit number, which must be a four-digit

zero-padded value, is a linear index starting at 0. The display

shows whether the qubit is active or not and displays the Chimera

index for the qubit. The qubit neighbors are displayed along

with the names and statues of the couplers connecting the qubit

to its neighbors.

Cnnnn – dw get Cnnnn displays the connection information and

active/inactive status for a particular coupler. The two qubits

connected by the coupler are displayed along with their status

and Chimera index.

param – dw get param displays the declared parameters and

indicates which parameter is current.

variable – dw get variable lists the declared variables.

assert – dw get assert lists the declared assertions. Each

assertion is given a label of the form Adddd. The first

assertions following dw init is numbered A0000 and the numeric

part of the label is incremented by one for each successive

assertion. The form dw get assert Adddd lists detailed

information about the specified assertion. This includes the

active parameter, the active variables and the truth table for

all possible states of the assertion. A value of 1 (resp. 0)

means that a state is valid (resp. invalid).

macro – dw get macro lists the built-in and user-defined macros

available within the dw set assert command. See dw-macro(1) for

more information.

qubo – dw get qubo displays a .qubo file from the workspace. The

.qubo file is created as a side-effect of dw embed. The .qubo

file lists the parameters, variables, terms and asserts which are

parsed from a .q file. With no arguments, dw get qubo displays

the default .qubo file (if one exists) in the workspace

directory. With a single argument, dw get qubo name.qubo

displays the specified .qubo file.

embedding – dw get embedding displays the embedding created as a

side-effect of dw embed. Each logical variable in the .q file

maps to a connected set of qubits which is listed following the

variable name. With no arguments, dw get embedding displays the

default.epqmi file (if one exists) in the workspace directory.

With a single argument, dw get embedding name.epqmi displays the

specified file. The .epqmi suffix indicates that the file

contains both an embedding (e) and a parameterized QMI (pqmi).

pqmi – dw get pqmi displays the PQMI created by dw embed. The

PQMI display contains five sections:

 PQMI Header Section – L, M and N parameters in geometry

 PQMI Active Qubit Mask – Active qubits in geometry

 PQMI Parameter Section – Parameters in the PQMI

 PQMI Coefficient Section – Qubit weights, Coupler strengths

 PQMI Validation Section – Validation expressions

These sections are all contained within the binary file format of

the PQMI and are produced by dw embed.

*.qmi – dw get [fmt=qubist] name.qmi displays a QMI in a simple

text format. If the optional fmt=qubist argument is provided, an

alternate format is generated. This format can be pasted

directly into the Data sheet of Qubist.

*.sol – dw get [-s NNN] name.sol displays a solution in a SOL

file. If the –s argument is omitted, all solutions are

displayed. Otherwise, the specified solution is displayed.

Solutions are numbered starting from 1.

version – dw get version displays the version numbers for the

components of the qOp package.

dw set ...

Allows the user to set the connection and solver, to create a QMI

or to build a set of parameters, variables and assertions for the

constraint compiler.

connection – dw set connection [c-name] sets the connection to a

specified option from the ~/.dwrc file. With no arguments, the

connection is unset.

solver – dw set solver [s-name] sets the solver to a specified

option supported by the current connection. With no arguments,

the solver is unset.

*.qmi – dw set [fmt=qubist] name.qmi reads standard input, which

is expected to contain a text representation of a QMI. Each line

of the input should match one of the four following patterns:

 SCALE_FACTOR <== fff.fff

 CONST <== fff.fff

 Qnnnn <== fff.fff

 Cnnnn <== fff.fff

The lines may be in any order. The lines are parsed to create a

QMI which is written to the current workspace with the specified

name. If the optional fmt=qubist argument is provided, an

alternate input format is used. The format is the same as that

used on the Data sheet of Qubist.

param – dw set param param-name declares a parameter with name

param-name and makes that parameter current. Since the dw init

command clears the current parameter, there is no current

parameter until the next dw set param command has been issued.

It is not an error to issue a dw set param command more than once

for the same parameter. This is useful when managing multiple

assertions that are tied to the same parameter.

variable – dw set variable variable-name declares a variable with

name variable-name. It is an error to declare the same variable

more than once. Each variable is assumed to take the value 0 or

1.

assert – dw set assert assertion declares an assertion assertion,

which is a shell expression over declared variables. The

assertion is evaluated for each possible assignment of 0/1 values

to its variables. If the expression evaluates to 0 (resp. 1) the

assertion is valid (resp. invalid). The assertion is tied to the

current parameter. This provides a mechanism for independently

strengthening or weakening QUBO terms associated to each

assertion. In addition to shell expressions, assertion can

invoke a macro. Built-in and user-defined macros are available.

See dw-macro(1) for more information.

macro – dw set macro macro-name macro-expr defines a new user-

defined macro for use in subsequent dw set assert statements.

See dw-macro(1) for more information.

dw cd

dw cmp

dw cp

dw ls

dw mkdir

dw mv

dw pwd

dw rm

dw rmdir

dw touch

dw cat

dw find

These are workspace management commands. All of them function in

exactly the same way as their Unix counterparts, except that they

operate on the current workspace directory rather than the

shell’s current working directory.

After setting the connection and solver for the 128-qubit

simulator, dw is configured to use the workspace located at

$DWAVE_WORKSPACE/workspace.c4. This is true regardless of the

current working directory in the shell when the dw set connection

and dw set solver commands were issued. To create a subdirectory

under the $DWAVE_WORKSPACE/workspace.c4 use dw mkdir dir-name.

To change the current workspace to that directory, use dw cd dir-

name. List the contents of the current workspace directory with

dw ls. Options such as -l for the Unix ls command can also be

used with dw ls. Files in the workspace directory can be

renamed, copied and deleted with dw mv, dw cp and dw rm. Remove

workspace directories with dw rmdir. An empty file can be

created in the workspace directory via dw touch. The path

relative to the top of the workspace is displayed via dw pwd. Dw

cat writes the contents of the named file(s) in the workspace to

standard output, which makes it easy to copy a file out of the

workspace. Dw find runs in the workspace directory, making it

easy to locate files in the workspace without having to navigate

to that directory.

dw init

The dw init command prepares the current workspace for a

compilation session by deleting all temporary files which are

created by dw set param, dw set variable, dw set assert and dw

set macro commands. All four of these commands write temporary

files into the current workspace. If the current workspace is

changed during a compilation session, then consistency across the

files may be lost.

dw compile

The dw compile command activates the compilation stage of the

constraint compiler. All parameters, variables and assertions

are converted into a QUBO which is then written to standard

output. Typically one will initiate a compilation session with

the dw init command followed by a sequence of dw set param, dw

set variable and dw set assert commands. After all parameters,

variables and assertions have been declared, issue the dw compile

command to create a QUBO which represents the entire problem.

The output from dw compile will usually be captured in a .q file.

dw embed [-r seed] input.q [embedding.e] [-c chain_parameter] [-o

output.epqmi]

The dw embed command requires as input a .q file, which specifies

a constrained QUBO. If no embedding is provided, dw embed

attempts to map each QUBO variable to a connected set of qubits

in the current Chimera architecture. An embedding can be

provided, causing dw embed to skip the step of generating its own

embedding. In either case, a PQMI is formed from the QUBO and

the embedding. The PQMI contains expressions to compute the

coefficients for all qubits and couplers used by the embedding.

The embedding and PQMI are written together in a single binary

file with .epqmi suffix in the current workspace. If no output

is specified, the file is named default.epqmi. Otherwise, the

name provided via the optional –o output.epqmi argument is used.

Embedding uses a random number generator, so each call to dw

embed will generally result in a distinct embedding and PQMI. To

ensure repeatability, use the optional –r seed argument which

specifies a seed for the random number generator used during

embedding. If the embedding requires multi-qubit chains for any

variable, a chain strength parameter named param_chain is

included in the PQMI. To change the name of the chain strength

parameter, use the optional -c chain_parameter argument. The

file format of the .q file is described elsewhere.

dw qbsolv input.q [-o output.pqb]

The dw qbsolv command requires an input a .q file, which defines

a constrained QUBO. The QUBO is prepared for execution with

qbsolv, which is alternative execution method useful for problems

that are too large or dense to embed into a QMI. The output

file, if specified, should have suffix .pqb which stands for

Parametrized QuBo. If no output is specified, the name of the

output will be taken from the input .q file. The user can

override this default by providing the -o output.pqb argument.

In either case the output is written into the current workspace.

The output file contains the same set of parameters defined in

the .q file and so it must be bound via dw bind before execution.

dw bind [param1=val1 [param2=val2 [...]]] [file1.b [file2.b [...]]]

The dw bind command gives values to the parameters of a EPQMI or

PQB file. If only one of the two file types (PQMI or PQB)

exists, then that file is taken as the input for the dw bind

command. If both exist, then the newer of the two file types is

used. If dw bind uses a PQMI file, the output of dw bind is a

QMI which is ready for execution. If dw bind uses a PQB file,

the output is a qbsolv job. The output of binding an EPQMI file

is a .qmi file. The output of binding a .pqb file is a .qbi

file.

The parameters appearing in a PQMI arise in two ways. First, the

underlying QUBO lists parameters whose values should be specified

before execution. Second, most QUBOs require multi-qubit chains

when embedded into Chimera. The validity of these chains is

affected by the chain strength parameter, whose default name is

param_chain and which may be overridden by the optional -c

argument to dw embed. Only PQMI jobs use the chain strength

parameter. Qbsolv jobs only use parameters specified in the

underlying QUBO.

Values can be provided on the command line by providing an

argument of the form param=val with no intervening spaces.

Values can also be provided in a bind file (*.b), each line of

which has the same param=val format. It is permissible to mix

command argument and bind file specification of parameter values.

Command arguments and bind files are processed in the order

listed. If a parameter appears more than one time in command

arguments or bind files, its last appearance takes precedence.

The dw bind command always operates on the EPQMI or PQB file with

name default.epqmi or default.pqb in the current workspace.

dw exec [-t] [num_reads=NNN] [-p {optimize|sample}] [-c] [beta=BBB]

[annealing_time=TTT] {file1.qmi [file2.qmi [...]]|file.qbi}

The dw exec command executes one or more QMIs or one qbsolv job

on any connection and solver. The QMI files are generally

created via either dw set name.qmi or by binding an EPQMI file

which was created via dw embed. A qbsolv job is usually created

by binding a PQB file which was created by dw qbsolv. The output

from dw exec is one .sol output file for each .qmi input file or

one .qbo file for the .qbi input file.

The following options apply only to QMI jobs: Specify –t to

display timing output. If the num_reads option does not appear

on the command line, the default number of samples read for each

QMI is 10. Use –p followed by either optimize or sample to

invoke post-processing, if supported by the current solver.

Specify –c to enable chain fix-up during post-processing. Set

the beta value by providing beta=BBB as an argument for those

solvers that support sampling. Set the annealing time by

providing annealing_time=TTT with TTT specified in microseconds.

dw val [-v] [-s nnn] {file.sol|file.qbo}

The dw val command applies validation criteria to one or more

solutions from a .sol or .qbo file and reports on the results. A

QMI that has been generated directly from dw set name.qmi has no

validation criteria and so dw val should not be used. An EPQMI

generated via dw embed contains validations and so dw val uses

validations from the default.epqmi file in the current workspace.

A PQB generated via dw qbsolv contains validations and so can

also be used with dw val.

With no argument, four totals are displayed for .sol files:

 Total samples

 Distinct samples

 Total valid

 Distinct valid

With the –v argument, all validation criteria are evaluated for

each solution. Solutions meeting all validation criteria are

marked valid, and solutions failing at least one validation

criteria are marked invalid. The number of occurrences of each

solution and energy are displayed for each solution. With the –s

argument, the information displayed is limited to a single

solution. Solutions are numbered starting with 1.

For .qbo files, displayed information is limited to the solution

(interpreted according to the logical variables in the underlying

QUBO), overall validation status, objective value, and the result

of each validation criteria.

dw add sum.qmi file1.qmi [file2.qmi [...]]

The dw add command adds one or more QMIs from the current

workspace and writes the sum QMI back to the current workspace.

Note that adding two or more QMIs simply means adding the

corresponding weights and strengths. For example, if file1.qmi

contains a weight of 4.7 for Q0123 and file2.qmi contains a

weight of -2.3 for Q0123, then the sum QMI will have a weight of

2.4 for Q0123.

dw trans transform.t transformed.qmi original.qmi

dw trans transform.t original.sol transformed.sol

The dw trans command implements both graph and gauge

transformations on either QMI or SOL files. Transformations are

specified via a simple text format file with suffix .t. Each

line of the transformation file specifies a target and source

qubit as follows:

 Q0000 <== Q0001

This line means that source qubit Q0001 in the original QMI will

be sent to target qubit Q0000 in the transformed QMI. To specify

a gauge transformation in addition to the qubit mapping, include

a tilde symbol on the right hand side of the assignment arrow:

 Q0000 <== ~Q0001

This means that the 0 (resp. 1) value of qubit Q0001 will

correspond to the 1 (resp. 0) value of qubit Q0000 in the

transformed problem.

When applied to a QMI file, weights and strengths move from

source to target. For example, if the first specification line

above appears in the transform file, then the weight for qubit

Q0001 in original.qmi will match the weight for qubit Q0000 in

transformed.qmi.

When applied to an SOL file, qubit values move from target to

source. For example, if qubit Q0000 is 1 in the seventh solution

in transformed.sol, then qubit Q0001 will be 1 in the seventh

solution in original.sol.

dw trans moves qubit weights and coupler strengths (from QMI

files) in the opposite direction to qubit values (from SOL files)

for the following reason: we can either execute the original QMI

directly, or transform it with dw trans, execute the transformed

QMI, and then transform the solutions again with dw trans. The

latter route employs symmetry averaging to eliminate hardware

bias.

dw trans expects a single .t file argument, which is the

transform file. This is a text file and resides in the local

directory. If dw trans has two .qmi file arguments, the first is

treated as the transformed QMI and the second is treated as the

original QMI. If dw trans has two .sol file arguments, the first

is treated as the output SOL and the second is the input SOL.

Both .qmi and .sol files reside in the remote workspace.

EXAMPLE

The first example is a complete Bash shell script that uses dw to

create a connection, obtain a solver, define a QMI, execute the

QMI, and examine the solutions:

#!/bin/bash

dw set connection laptop

dw set solver c4-sw_sample

dw set first.qmi <<EOF

 Q0000 <== 5

 Q0004 <== 5

 C0000 <== -10

EOF

dw exec first.qmi

dw get first.sol

The next example shows the naming and creation of a new workspace

in dw. A new workspace is created whenever the user sets a

connection and solver which has a distinct geometry from any that

the user has worked with before. This may happen either via the

dw set solver ... or dw get solver commands. In the following

snippet taken from a shell session, the user invokes dw get

solver, and dw responds by listing the one available solver. The

user chooses solver DW2X_SYS4, and dw determines that this is a

new geometry. dw responds by prompting the user for a new

workspace name. The user provides the name sys4 and the new

workspace is created using that name. Finally, the solver is set

to DW2X_SYS4:

Documents> dw get solver

VALUE('solver') IS UNSET

Available solvers:

1) DW2X_SYS4

SELECT A SOLVER (OR Ctrl-D TO SKIP SELECTION): 1

NO WORKSPACE ASSOCIATED WITH SOLVER 'DW2X_SYS4'

ENTER A NEW WORKSPACE NAME OR HIT <ENTER> TO ABORT: sys4

CREATED WORKSPACE 'workspace.sys4

SETTING VALUE('solver') TO 'DW2X_SYS4'

The third example demonstrates usage of the constraint compiler

in dw. The example declares a single parameter, four variables

and two assertions. It compiles and produces an output QUBO,

which can be embedded or solved using qbsolv:

dw init

dw set param p

dw set variable x

dw set variable y

dw set variable z

dw set variable w

dw set assert 'x + y + z - 1'

dw set assert 'z * w'

dw compile

The QUBO output is generated by the dw compile command. All

earlier commands record their results in the current workspace

directory. The dw commands for establishing the connection,

solver and workspace directory determine the location of the

temporary files written by the dw set commands.

BUGS

Please report bugs to dwsupport@dwavesys.com.

COPYRIGHT

© 2016 D-Wave Systems Inc.

SEE ALSO

The file format of dw QUBO files is described in Q.pdf. Built-in

macros and user-defined macros for the dw constraint compiler are

described in DW-MACRO.pdf.

mailto:dwsupport@dwavesys.com

