
Q(5) File Formats Q(5)

NAME

*.q – parameterized QUBOs

SYNOPSIS

*.q

DESCRIPTION

The dw embed command reads a text format input file with suffix

.q that defines a parameterized Quadratic Unconstrained Binary

Optimization (QUBO) problem. If successful, dw embed creates a

binary format output file containing either a generated or user-

specified embedding and a single parameterized quantum machine

instruction (EPQMI). This describes the format of the .q file

which is the input to dw embed.

QUBO files which can be parsed by dw embed have a very simple

format. Blank lines are ignored. Comment lines must begin with

a hash character. Apart from these, there are four other kinds

of lines that may appear in a .q file, each of which may appear

more than one time, and must appear in the following order:

param: defines a parameter to be provided to dw bind

var: defines 0/1 variable over which QUBO is minimized

term: defines a term appearing in the QUBO

assert:[varname:] defines an assertion

Both parameter and variable names are alphanumeric, case

sensitive, must begin with an alphabetic character, and can

contain underscores. Examples are: x, foo, ra3_Z.

Terms are simple arithmetic expressions involving constants,

parameters and variables. Infix notation and parentheses are

supported with operators *, /, +, -. Terms are of three kinds:

constant, linear and quadratic. Constant terms do not contain

any variables, linear terms depend linearly on a single variable,

and quadratic terms are proportional to the product of exactly

two distinct variables. Apart from variables, each term may

include a single parameter. The objective associated with the .q

file is obtained by summing all the term: lines in the QUBO.

Assert lines with a single colon do not include a parameter.

Assert lines with two colons contain a parameter name between the

two colons. In either case, an expression follows the last

colon. The expression supports infix notation and parentheses

and can contain any number of variables. The expression is

intended to capture constraints that should be satisfied when the

QUBO is minimized. These constraints are translated into the

PQMI so that validation can be performed on samples drawn from a

quantum machine instruction execution. If a parameter name

appears, it associates the assertion with term(s) that are

responsible for ensuring that the assertion is satisfied when the

QUBO is minimized. An assertion is valid when it evaluates to 0

after values have been supplied for the variables appearing in

it.

Here is a complete and syntactically correct .q file:

param: color

param: weight_r

param: weight_g

param: weight_b

var: red

var: green

var: blue

term: -1 * color * red

term: -1 * color * green

term: -1 * color * blue

term: 2 * color * red * green

term: 2 * color * red * blue

term: 2 * color * green * blue

term: weight_r * red

term: weight_g * green

term: weight_b * blue

assert:color: red + green + blue – 1

In the above example, the first six terms are chosen so that the

QUBO is minimized when exactly one of the three variables has the

value 1 and the other two have the value 0 (provided that the

color parameter has a positive value). The assertion evaluates

to 0 when this condition is true and to a non-zero value when

this condition is false. The six terms all include the color

parameter, and so the strength of the terms responsible for

enforcing the assertion can be modified by adjusting color’s

value. The final three terms in the .q file allow the three

valid solutions to be weighted independently using additional

parameters.

Here is the redisplayed QUBO as shown by dw get qubo:

**************** DW_qubo: PARAMETERS ****************

PARAMETER("color"): value=0.000000

PARAMETER("weight_r"): value=0.000000

PARAMETER("weight_g"): value=0.000000

PARAMETER("weight_b"): value=0.000000

**************** DW_qubo: VARIABLES ****************

VARIABLE("red"): id=0 value=0

VARIABLE("green"): id=1 value=0

VARIABLE("blue"): id=2 value=0

**************** DW_qubo: TERMS ****************

TERM(0): expr="(weight_r+((-1)*color)) * red"

TERM(1): expr="(weight_g+((-1)*color)) * green"

TERM(2): expr="(weight_b+((-1)*color)) * blue"

TERM(0,1): expr="(2*color) * red * green"

TERM(0,2): expr="(2*color) * red * blue"

TERM(1,2): expr="(2*color) * green * blue"

**************** DW_qubo: ASSERTS ****************

ASSERT(0): param="color" expr="(((red+green)+blue)-1)"

In the standardized QUBO format, there are sections for

parameters, variables, terms and assertions. Variables are

assigned numeric ids starting from 0. These numeric ids identify

the variable(s) appearing in each term in the objective.

Assertions are also numbered. Note that the input file contains

two linear terms for each variable and these have been combined

into a single term in the display.

During embedding, dw embed associates each variable with a chain

of one or more physical qubits. If any of the chains have length

greater than one, dw embed introduces an additional parameter

whose default name is param_chain and which controls the strength

of the interactions responsible for maintaining chain integrity.

Dw embed uses sapi_findEmbedding() from the D-Wave C API to

create qubit chains. The default parameters for this function

are in effect when dw embed invokes the function. For example,

the 1000 second default timeout means that if dw embed is unable

to find an embedding, it will spend approximately 1000 seconds

before exiting. If a valid embedding is found, the embedding

information is contained within the default.epqmi file and can be

viewed using the dw get embedding command.

BUGS

Please report bugs to dwsupport@dwavesys.com.

COPYRIGHT

© 2016 D-Wave Systems Inc.

SEE ALSO

The output EPQMI file generated by dw embed is binary. To

display it in readable format and to further manipulate it, use

the dw(1) command.

mailto:dwsupport@dwavesys.com

