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Outline
• Cavity Quantum Electrodynamics
• Rabi oscillations
• Cooper pairs and superconductivity
• Josephson junction
• SQUID
• Cooper Pair Box
• Transmon
• Entangled transmons
• IBM examples



Cavity Quantum Electrodynamics

• EM field creation & annihilation 
operators:

• Atomic energy level raising and 
lowering operators:

• Hamiltonian of coupled system 
(Jaynes-Cummings Hamiltonian):
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Rabi Oscillations
• When a two-level system is coupled to a driving field at precisely 

the frequency corresponding to the energy difference between 
the states, the system will oscillate between the two states at the 
Rabi frequency
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• “π-pulse”:              inverts the state
• “π/2-pulse”:                creates equal superposition of states 

(Hadamard gate)
• Key point: you can flip a state or create a superposition state by 

controlling the pulse length

Changing States with Pulses
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Cooper Pairs and Superconductivity
• Spin ½ particles are “Fermions”

– Fermions obey the Pauli exclusion principle: no two can be in the same state
– Electrons are Fermions

• Spin 1 particles are “Bosons”
– Bosons do not obey the Pauli exclusion principle: you can have as many in a state as 

you want
– Photons are Bosons

• In a superconductor, an effective attractive interaction between electrons 
causes them to be loosely bound together and act like a single spin 1 
particle: “Cooper Pair”

• Since Cooper pairs are spin 1, they act like Bosons, and you can have 
multiple Cooper pairs in the same state



Cooper Pairs are the result of the Electron-Phonon 
interaction in the theory of Bardeen, Cooper, and 
Schreifer (BCS Theory)
• Electrons normally repel one 

another, but are attracted to 
ions in the crystal lattice

• If the ions are pulled slightly 
toward an electron, from a 
distance it can appear as 
though there is a net positive 
charge, attracting another 
electron

Image from Quora



Josephson tunnel junction

• Looks like a non-linear inductor: origin of anharmonicity: 
spacing between energy levels is not the same
– Enables the individual addressing of a single pair of states
– In contrast, in the harmonic oscillator, all states are equally spaced

Ph.D. thesis: Vratislav Michal
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Superconducting Quantum Interference Device (SQUID)

• Parallel Josephson 
Junctions

• Current depends on applied 
magnetic field

• Preview: enables qubits to 
be “tuned” by an external 
magnetic field 1 2 1
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Cooper Pair Box
• Energy in a capacitor:

• For an electron:

• Ec is the “charge energy” associated with a single electron
• Total charge energy with n C-Ps:

2

2

1 ,
2

2

c

c

E CU Q CU

QE
C

= =

⇒ =

2

,

,  
2c g j

Q e
eE C C C
C Σ

Σ

= −

⇒ = = +

2

2
4q c

Q en
E E n
= −

= Bouchiat, et al



Cooper Pair Box Hamiltonion
• The charge stored on a box with an applied voltage 

U to the “gate”:

• The Hamiltonian of an isolated box can be written

• Additional C-Ps can tunnel in & out through the 
Josephson junction, described by the coupling 
Hamiltonian

• This interaction opens “gaps” of width EJ at the 
crossing points
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Two lowest states of CPB
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Circuit Quantum Electrodynamics

• Co-planar microstrip resonator formed 
by gaps in center conductor

• Isomorphic with Cavity Quantum 
Electrodynamics used in trapped ion 
quantum computers

• Express Hamiltonian in “up” & “down” 
states along the “field” h
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Control and Read-out
• When the CPB couples to the microstrip resonator and both are tuned to the same 

frequency, there is a splitting into two modes
• Sending in a pulse near ωr enables you to read-out the state either from the phase, or the 

amplitude
• Sending in a pulse detuned from the resonance rotates the state, but does not make a 

measurement (there is no information about the state in the reflected signal)

Blais, et al



Control Pulse simulation

• Control signal turned on for 7 
pi pulses then turned off

• The state rotates between 
the excited and ground states

• The cavity photon level is 
small since the cavity is 
detuned from resonance

Blais, et al



Cooper Pair Box vs Transmon
• Quantities crucial to operation of CPB:

– Anharmonicity (energy levels not equally spaced—results from JJ nonlinearities)
– Charge dispersion (variation of energy levels to fluctuations in offset charge and gate 

voltage—reduces coherence time)
• Key ratio: EJ/EC

– Small values give larger anharmonicity and clean CPB charge states
– Large values reduce anharmonicity but also reduce sensitivity to charge fluctuations
– Anharmonicity reduces algebraically with increasing EJ/EC while charge dispersion 

reduces exponentially with increasing EJ/EC 

• Transmon: similar to CPB but operates at a large EJ/EC to increase 
coherence time while maintaining adequate anharmonicity



Transmon

• Adds extra capacitance by adding λ/20 
transmission lines to either side of a pair 
of Josephson Junctions forming a SQUID
– Increases the ratio EJ/Ec by reducing Ec :

Koch, et al (not to scale)
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Reducing the Sensitivity to bias voltage with EJ/Ec

• In the large EJ/Ec limit, the 
energy difference between 
the ground and excited states 
becomes insensitive to the 
bias voltage

• Sufficient difference in energy 
levels is maintained

Koch, et al.



Mechanical Analogy

• Large EJ/Ec means gravity dominates 
the effect of the charge & B field

• Look at excitations near
• Charge noise stability the result of 

exponential dependence of tunneling 
on barrier width

• Anharmonicity is the result of the 
sinusoidal potential energy 
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Entangling multiple qubits

• Qubits coupled through the photon field
• Multiple qubits could be placed in the same co-planar microstrip

resonator
• Qubits in separate resonators can be coupled via a microstirp

bus



Example Devices Fabricated at IBM

2 qubits
1 bus
2 readout resonators
(2-qubit gates)

3 qubits
2 bus
3 readout resonators
(demonstrated parity
Measurement)

4 qubits
4 bus
4 readout resonators
(demonstrated
[2,0,2] code)

8 qubits
4 bus
8 readout resonators
(study both Z and X 
Parity checks)

Micrograph of individual transmon qubitGambetta, et al
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