

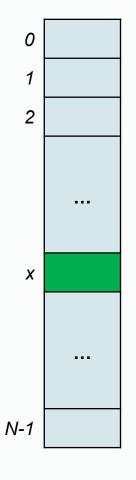
Grover's Algorithm (quantum search)

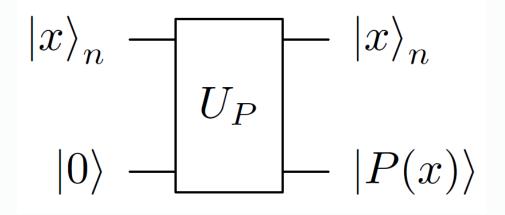
ECE 592/CSC 591 - Fall 2019

Set of values {0, ..., N-1} Predicate (black box) function P: {0, ..., N-1} \rightarrow {0, 1} Find x such that P(x) = 1

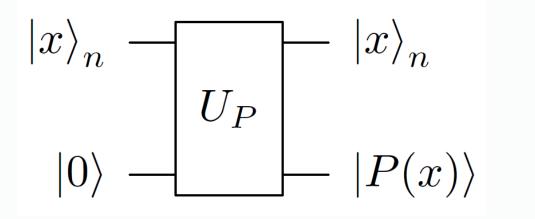
Values are "unstructured," so classically requires ~N/2 trials Grover finds the solution with $O(\sqrt{N})$ evaluations of P

N = 2ⁿ
Only 1 solution (for now)
P is efficient to execute, but not so structured as to give classical advantage



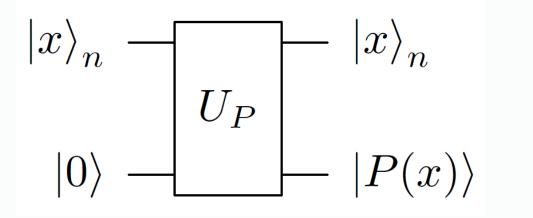


P(x) must be efficient to compute. Exponential in N will negate advantage



If we know P(x), don't we already "know" x?

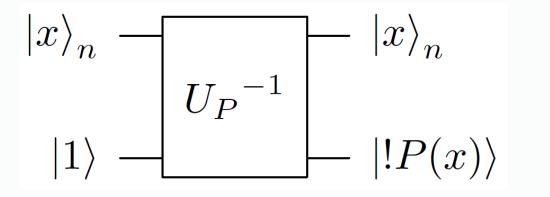
P(x) is a checker function. It might be easy to verify that an input satisfies P(x), but hard to find such an input. Examples: factoring, SAT, ...



Can't we just calculate P(x) on all inputs at once?

Yes, but we only get one output when we measure. This is equivalent to random sampling in the classical version.

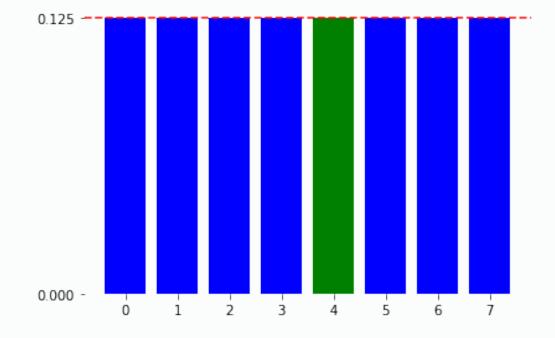
When n is large, need lots of trials (shots) to be confident that we will see P(x) = 1.



Can we run it in reverse?

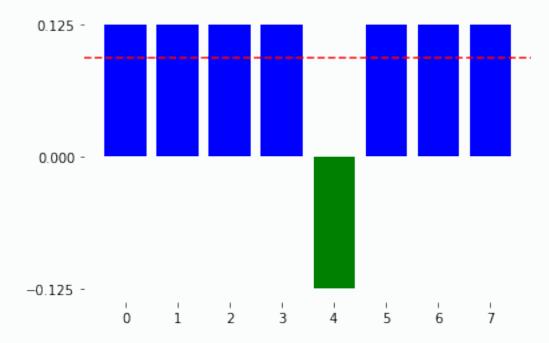
Yes, but there's no advantage. Can't "pin" output to 0, so still sampling from all possible outputs.

Compare to quantum annealing, where setting output P(x) = 1 as a low-energy state can improve odds of finding solution.



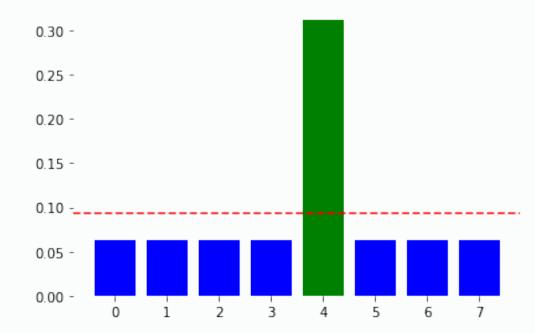
Input = equal superposition. All amplitudes are equal, so chances of measuring solution (green) is the same as any other.

Need to increase solution amplitude and reduce others.



Step 1: Inject relative phase for solution state.

Note that mean (dotted line) has changed.

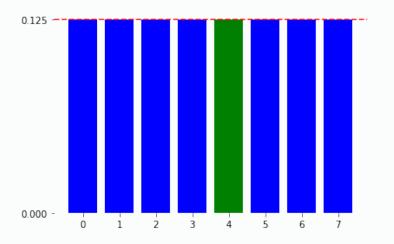


Step 2: Invert around the mean.

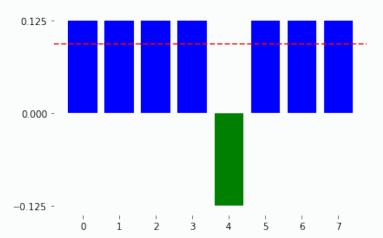
$$a_i \rightarrow 2A - a_i$$

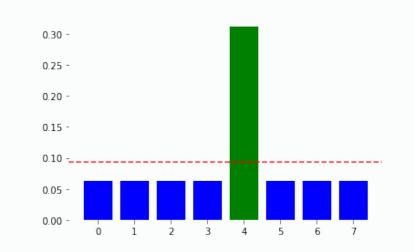
This is the "Grover iteration." We do it $O(\sqrt{N})$ times.

Start

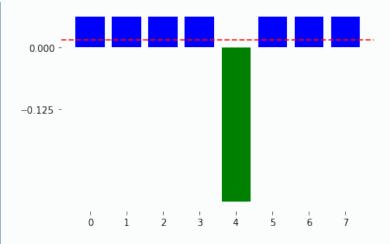


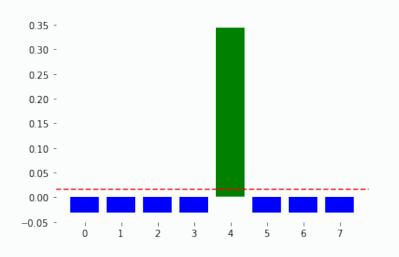
Iteration 1

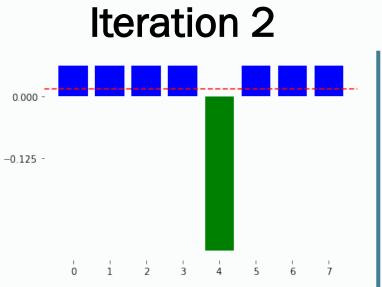




Iteration 2







0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

0.05 -

0.00

-0.05 -

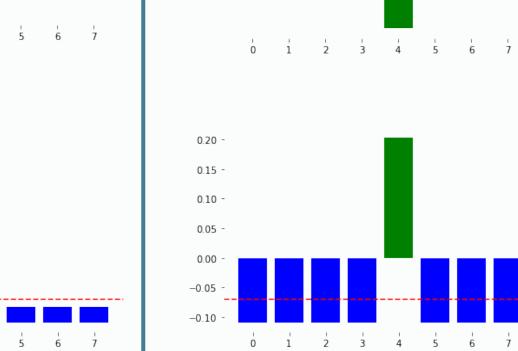
i

ò

2

3

4



0.000 -

-0.125 -

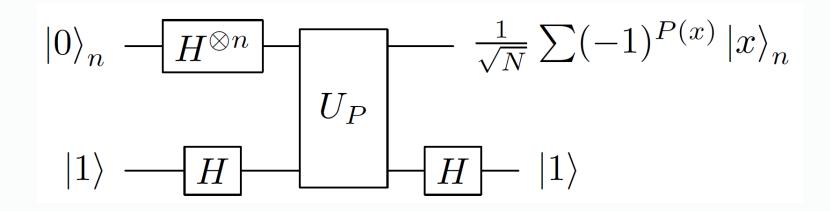
Iteration 3

If you do too many iterations, the amplitude reduces.

Here comes the math...

Step 1: Phase change

We already know how to do this...



Step 1: Phase change

$$G = \{x | P(x)\} - \text{good elements}, |G| << N$$
$$B = \{x | \neg P(x)\} - \text{bad elements}$$

$$\begin{split} |\psi_G\rangle &= \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle \\ |\psi_B\rangle &= \frac{1}{\sqrt{|B|}} \sum_{x \notin G} |x\rangle \\ |\psi\rangle &= W |0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{2^n - 1} |x\rangle = g_0 |\psi_G\rangle + b_0 |\psi_B\rangle \\ g_0 &= \sqrt{|G|/N}, b_0 = \sqrt{|B|/N} \end{split}$$

$$S_{G}^{\pi} \left|\psi\right\rangle = -g_{0} \left|\psi_{G}
ight
angle + b_{0} \left|\psi_{B}
ight
angle$$

Step 2: Inversion about the Mean

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \to \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

$$2A - a_i = \frac{2}{N} \sum_i a_i - a_i$$

$$D = \begin{bmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \ddots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{bmatrix}$$

Step 2: Inversion about the Mean

$$D = \begin{bmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{bmatrix} = -WS_0^{\pi}W$$

$$S_0^{\pi} = \begin{bmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}, \text{ and } S_0^{\pi} = I - R$$

Since
$$R_{ij} = 0$$
 for $i \neq 0$ or $j \neq 0$,
 $(WRW)_{ij} = W_{i0}R_{00}W_{0j} = \frac{2}{N}$

E

Step 2: Alternate Description

$$D = \begin{bmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{bmatrix} = W(2 |0\rangle \langle 0| - I)W = \frac{2 |\psi\rangle \langle \psi| - I}{\sqrt{|\psi|} - I}$$

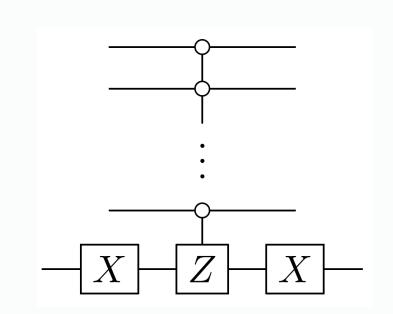
$$R = \begin{bmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

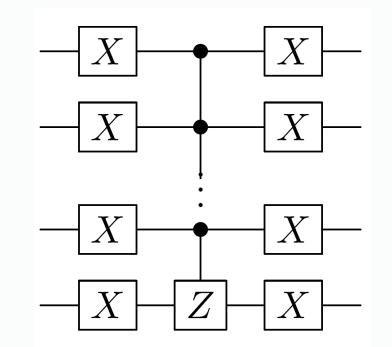
$$\begin{bmatrix} \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \end{bmatrix}$$

Implementation

2nd phase change

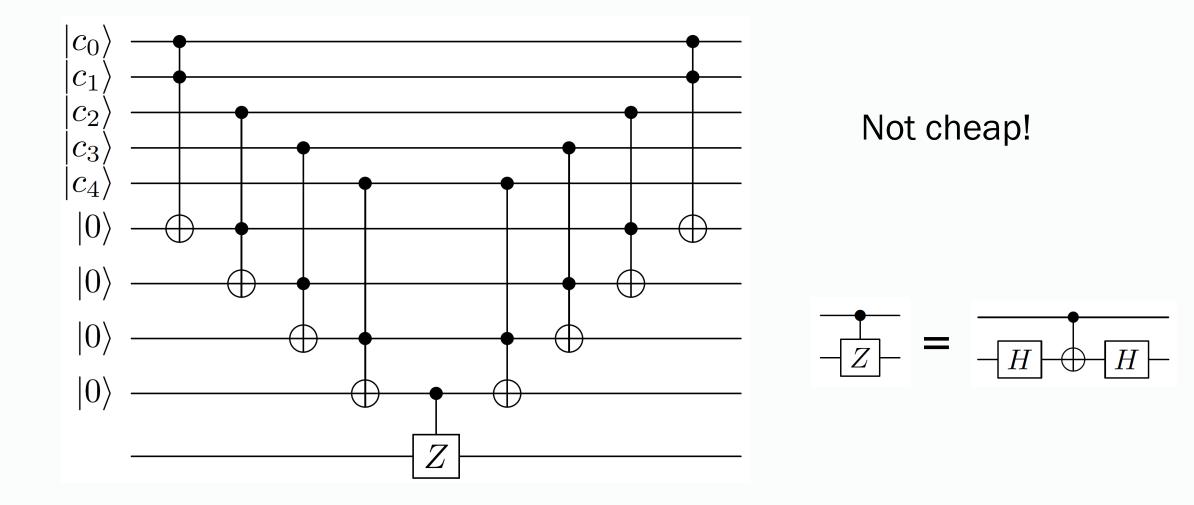
 $D = -WS_0^{\pi}W$ Ignore the global phase (-) and implement the selective phase change S_0^{π} .



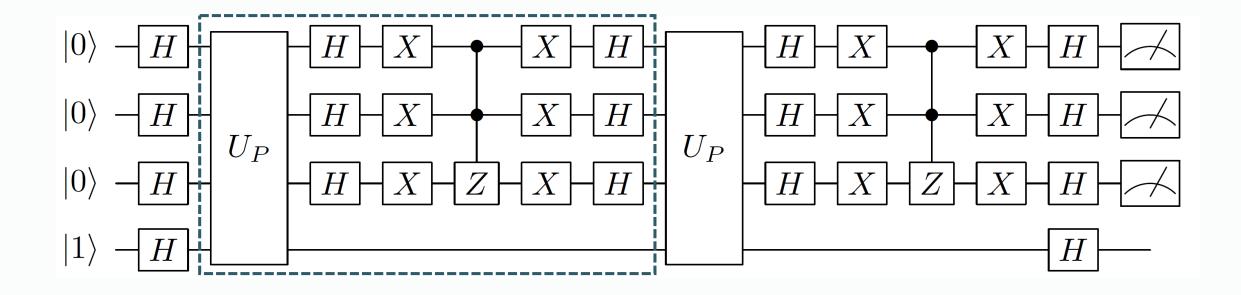


By adding and removing X, can change phase for any single pattern of 00..11..

Multi-Controlled Gate



3 qubits, 2 iterations



Here comes more math...

$$DS_G^{\pi}: g_i |\psi_G\rangle + b_i |\psi_B\rangle \to g_{i+1} |\psi_G\rangle + b_{i+1} |\psi_B\rangle$$

To the average A_i , the term $-g_i |\psi_G\rangle$ contributes |G| amplitudes $\frac{-g_i}{\sqrt{|G|}}$ and $b_i |\psi_B\rangle$ contributes |B| amplitudes $\frac{b_i}{\sqrt{|B|}}$

$$\mathbf{2} \quad A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

3

Let t be the probability that a random value in $\{0, \ldots, N-1\}$ satisfies P. Then t = |G|/N and 1 - t = |B|/N.

$$A_i \sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$
$$A_i \sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}g_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$\begin{array}{rclcrcl} g_{i+1} & = & 2A_i\sqrt{|G|} + g_i & = & (1-2t)g_i + 2\sqrt{t(1-t)}b_i \\ b_{i+1} & = & 2A_i\sqrt{|B|} - b_i & = & (1-2t)b_i + 2\sqrt{t(1-t)}g_i \\ g_0 & = & \sqrt{t} \\ b_0 & = & \sqrt{1-t} \end{array}$$

A solution to these equations is:

$$g_i = \sin((2i+1)\theta)$$

 $b_i = \cos((2i+1)\theta)$
with $\sin \theta = \sqrt{t} = \sqrt{|G|/N}$

$$g_{i} = \sin((2i+1)\theta) \approx 1$$
$$(2i+1)\theta \approx \frac{\pi}{2}$$
$$i \approx \frac{\pi}{4} \left(\frac{1}{\theta}\right)$$
For $|G| << N, \sqrt{|G|/N} = \sin \theta \approx \theta$
$$i \approx \frac{\pi}{4} \sqrt{N/|G|}$$

For 3 qubits: $\frac{\pi}{4}\sqrt{8} = 2.22$

Observations

Observations

- Grover's algorithm is optimal. No quantum algorithm can solve exhaustive search better than $O(\sqrt{N})$.
- If more than one solution (|G| > 1), still works. Number of iterations is reduced accordingly: $\frac{\pi}{4}\sqrt{N/|G|}$.
- Approaches to solve if number of solutions is unknown.
- Can slightly tweak to get a guaranteed (not probabilistic) solution. With NISQ, probably not worth it.

• Instead of using W on input data, compute $U|0\rangle$ with some transform that provides a better starting point.

• Iterations =
$$\frac{\pi}{4}\sqrt{1/t}$$

Practical Considerations

- Efficiency of U_P
- If there is structure in solution space, classical algorithms can take advantage.
 - Example: searching an alphabetically sorted list.
- If solutions cannot be enumerated easily, can take more time to set up quantum state than run the algorithm.
- Amplitude amplification has been shown to provide speedup for some algorithms. Only quadratic, so if algorithm requires exponential calls to U_P , it's still exponential.