
@NCStateECE

QAOA
Combinatorial Optimization

ECE 592/CSC 591 – Fall 2019

Wang, Wang, JCAM, May 2010.

Variational Quantum Algorithms

Based on variational method of quantum mechanics
• finding approximations to ground state - lowest energy eigenstate

General idea
Prepare trial state based on parameter(s)
Evaluate expected value of observable (Hamiltonian) for that state

Minimum expected value = lowest eigenvalue
(Our examples will actually try to maximize the expected value.)

Adjust parameter(s) -- usually with classical optimizer
Repeat to find minimum (or maximum)

Create state
〉|)𝜓𝜓(𝛽𝛽, 𝛾𝛾〉|0 measure

Calculate
𝐻𝐻 𝜓𝜓

Adjust parameters
𝛽𝛽, 𝛾𝛾

Quantum

Run and measure
a bunch of times,
evaluate H for each,
compute average.

QAOA and VQE

Quantum Approximate Optimization Algorithm (QAOA)
State = alternating circuits (operators).
based on cost function and mixing function

Depth (p): number of alternating operators

Variational Quantum Eigensolver (VQE)
Based on fixed “variational forms”

Farhi, Golstone, Gutman, arXiv:1411.4028v1, 2014.

Peruzzo, et al. Nature Comm, 2014.
https://community.qiskit.org/textbook/ch-applications/vqe-molecules.html

@NCStateECE

QAOA

Objective Function

z is an n-bit string.

There are m clauses in the objective.
Each clause typically involves only a few bits.

C_a(z) is 1 if z satisfies the clause.

Satisfiability: Is there a string (z) that satisfies all clauses?
MaxSat: Which string (z) satisfies the most clauses?
Approximate Optimization: Find a string (z) for which C(z) is close to the maximum.

Example: MaxCut

Divide a graph into two partitions, such that the number of edges
that connect between partitions is maximized.

Define a Unitary Operator

For a given state z, each clause that is satisfied applies a phase
rotation of 𝛾𝛾. So state(s) that maximize objective function will be
rotated most.

Range of 𝛾𝛾 = 0 to 2𝜋𝜋 𝑒𝑒𝑖𝑖𝛾𝛾𝑨𝑨 = cos 𝛾𝛾 𝑰𝑰 + 𝑖𝑖sin(𝛾𝛾)𝑨𝑨

Implementation

https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_16.pdf

Quirk

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B%22H%22,%22H%22,%22H%22,%22H%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,1,%22%E2%80%A2%22,1,1,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,%22%E2%80%A2%22,1,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,%22%E2%80%A2%22,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,1,%22%E2%80%A2%22,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B%22Amps4%22%5D,%5B%5D,%5B%5D,%5B%5D,%5B%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D%5D,%5B%5D,%5B%22Amps4%22%5D%5D%7D

Implementation

Selective phase change

Quirk

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B%22H%22,%22H%22,%22H%22,%22H%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,1,1,%22Z%5E%C2%BC%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,%22X%22%5D,%5B1,1,1,1,%22Z%5E%C2%BC%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,%22X%22%5D,%5B1,1,1,1,%22Z%5E%C2%BC%22%5D,%5B1,1,%22%E2%80%A2%22,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,1,%22Z%5E%C2%BC%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,%22X%22%5D,%5B%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D%5D%5D%7D

So far...

What if we apply 𝑈𝑈(𝐶𝐶, 𝛾𝛾) to input 〉|𝑠𝑠 ?

Rotating phase does not change amplitude,
so measuring will not give any advantage.

Each z has a probability of �1 2𝑛𝑛 so it’s no better than guessing.

Need to convert phase into amplitude...

Define a Mixing Operator

Quirk

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B%22H%22,%22H%22,%22H%22,%22H%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,1,%22%E2%80%A2%22,1,1,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,%22%E2%80%A2%22,1,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,%22%E2%80%A2%22,1,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,1,%22%E2%80%A2%22,%7B%22id%22:%22Rzft%22,%22arg%22:%22pi/2%22%7D%5D,%5B1,1,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,1,1,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B%22Amps4%22%5D,%5B%5D,%5B%5D,%5B%5D,%5B%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D,%7B%22id%22:%22Rxft%22,%22arg%22:%22-pi/4%22%7D%5D,%5B%5D,%5B%22Amps4%22%5D%5D%7D

Create Trial State

Choose 2p angles and...

Get expected value:

Maximization at p-1 can be
considered constrained
maximization at p.

Circuit depth is mp + p

Challenge: Finding Good Angles

Classical preprocessing (original paper)
With p = 1, approximation ratio is 0.6924. (Choosing random partition = 2/3)

Create grid over 𝛾𝛾 = [0,2𝜋𝜋] and 𝛽𝛽 = [0,𝜋𝜋] and explore.

Gradient descent -- can get stuck at local minima/maxima, expensive
in terms of evaluations required. (not recommended)

For noisy:
SPSA = Simultaneous Perturbation Stochastic Approximation

For simulator:
SLSP = Sequential Least Squares Programming
COBYLA = Constrained Optimization by Linear Approximation

From IBM textbook

Discussion

QAOA has not been demonstrated to perform better than classical.
Better approximation? Faster?

Can apply different mixing operators
Hadfield, et al., arXiv:1709.03489
Quantum Alternating Operator Ansatz (QAOA)

Dealing with more general
cost functions and constraints

@NCStateECE

Qiskit Aqua

Aqua Components

Pluggable algorithm classes
Ising model operators
QAOA, VQE, QGAN, ...

Circuits
Boolean logic functions, QFT, phase estimation...

Optimizers
COBYLA, SPSA, ...

Abstractions above circuits and gates

API Documentation

https://qiskit.org/documentation/index.html

class QAOA(...)¶
Parameters

operator (BaseOperator) – Qubit operator
operator_mode (str) – operator mode, used for eval of operator
p (int) – the integer parameter p as specified in https://arxiv.org/abs/1411.4028
initial_state (InitialState) – the initial state to prepend the QAOA circuit with
mixer (BaseOperator) – the mixer Hamiltonian to evolve with.
optimizer (Optimizer) – the classical optimization algorithm.

https://qiskit.org/documentation/index.html

Cost Operator

num_nodes = weight_matrix.shape[0]
pauli_list = []
shift = 0
for i in range(num_nodes):

for j in range(i):
if weight_matrix[i, j] != 0:

x_p = np.zeros(num_nodes, dtype=np.bool)
z_p = np.zeros(num_nodes, dtype=np.bool)
z_p[i] = True
z_p[j] = True
pauli_list.append([0.5 * weight_matrix[i, j],

Pauli(z_p, x_p)])
shift -= 0.5 * weight_matrix[i, j]

return WeightedPauliOperator(paulis=pauli_list), shift

qiskit/optimization/ising/max_cut.py

Using Operator to Build Circuit

circuit.u2(0, np.pi, q)
for idx in range(self._p):

beta, gamma = angles[idx], angles[idx + self._p]
circuit += self._cost_operator.evolve(

evo_time=gamma, num_time_slices=1, quantum_registers=q
)
circuit += self._mixer_operator.evolve(

evo_time=beta, num_time_slices=1, quantum_registers=q
)

qiskit/aqua/algorithms/adaptive/qaoa/var_forms.py

Useful Tutorials

qiskit-iqx-tutorials/qiskit/advanced/aqua/optimization/

max_cut_and_tsp.ipynb

vehicle_routing.ipynb

https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/optimization/max_cut_and_tsp.ipynb
https://github.com/Qiskit/qiskit-iqx-tutorials/blob/master/qiskit/advanced/aqua/optimization/vehicle_routing.ipynb

	QAOA�Combinatorial Optimization
	Variational Quantum Algorithms
	Slide Number 3
	QAOA and VQE
	QAOA
	Objective Function
	Example: MaxCut
	Define a Unitary Operator
	Implementation
	Implementation
	So far...
	Define a Mixing Operator
	Create Trial State
	Challenge: Finding Good Angles
	Discussion
	Qiskit Aqua
	Aqua Components
	API Documentation
	Cost Operator
	Using Operator to Build Circuit
	Useful Tutorials

