Breaking News...

* Google claims quantum supremacy

* IBM announces Quantum Computation Center and 53-qubit system
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Quantum technologies + Add fo myFT

Google claims to have reached quantum

supremacy

Researchers say their quantum computer has calculated an impossible problem for ordinary

machines

https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebelfl7
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Quantum Supremacy Using a Programmable
Superconducting Processor

Eleanor G. Rieffel
NASA Ames Research Center

Quantum technologies + Add to myFT

Rivals rubbish Google’s claim of quantum
supremacy

Researchers take aim at tech company for declaring computing milestone

https://www.ft.com/content/cedel11e0-dd51-11e9-9743-db5a370481bc



https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17
https://www.ft.com/content/cede11e0-dd51-11e9-9743-db5a370481bc

Quantum supremacy using a programmable superconducting processor

Google Al Quantum and collaborators’

The tantalizing promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor. A fundamen-
tal challenge is to build a high-fidelity processor capable of running quantum algorithms in an
exponentially large computational space. Here, we report using a processor with programmable
superconducting qubits to create quantum states on 53 qubits, occupying a state space 2°% ~ 101°.
Measurements from repeated experiments sample the corresponding probability distribution, which
we verify using classical simulations. While our processor takes about 200 seconds to sample one
instance of the quantum circuit 1 million times, a state-of-the-art supercomputer would require
approximately 10,000 years to perform the equivalent task. This dramatic speedup relative to all
known classical algorithms provides an experimental realization of quantum supremacy on a com-
putational task and heralds the advent of a much-anticipated computing paradigm.
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B By my count, on the new Google supremacy paper, there are 1.43 authors
per qubit.
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The Chip (Sycamore)

xO

X
% X
%X X
%, ¢
% X

3 I X

9

€U0 4, 090,099

@,
OxQ OxQ OxQ OxQ g

9©€HE0 0.0 00000

OxQ OxQ OxO OxQ g

@ 00 00000

9,
OxQ OxQ OxQ OxQ \ g

®©€UE0 0.0 000009

OxO OxQ OxO OxQ g

RaR
5.V V¢

g ¢
X X X

¢
¢
¢
¢
¢

10 millimeters
)
RS L R

9,

¢

g

%o %0 0%
X

X

x Qubit 0 Adjustable coupler



Quantum Supremacy

* What is the task?

* sampling the output of a pseudo-random quantum circuit

* probability distribution of the [measured] bitstrings resembles a speckled
intensity pattern produced by light interference in laser scatter

 classically computing [...] becomes exponentially more difficult as the
number of qubits (width) and number of gate cycles (depth) grows
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—{ 53 qubits, 1113 single-qubit gates,
A B 430 two-qubit gates = 0.002
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IBM Quantum Computing Center

IBM’s 10 Quantum Device Lineup 53 Ql.lbit Rochester Device
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Deutsch-Josza Algorithm

Problem: Given an n-bit Boolean function (mapping n bits to 1) that is known to be either
constant or balanced, determine whether it is balanced or constant. A function is “balanced” if
an equal number of input values return O and 1.

Apply phase shift of i to negate elements where f(x) = 1.
Apply Walsh-Hadamard to the result.

For constant f, the final output is |0) with probability 1.
For balanced f, the final output is non-zero with probability 1.

(Details on next slides.)

Requires only a single call to black box Ug, while classical algorithm requires at least 271 4+ 1 calls.



Background: Hamming Distance

The Hamming distance dy(x,y) between two bit strings x and y is the number of bits
in which the two strings differ.

The Hamming weight dy (x) of a bit string x is the number of 1 bits.

For two bit strings x and y, the operator x - y gives the number of common 1 bits.

Some interesting notes:

0 otherwise

vy =dyg(x A1 - 2] nof gy =

=0 =0



More on Walsh-Hadamard




Deutsch-Josza Algorithm

Problem: Given an n-bit Boolean function (mapping n bits to 1) that is known to be either
constant or balanced, determine whether it is balanced or constant. A function is “balanced” if
an equal number of input values return O and 1.

Apply phase shift of i to negate elements where f(x) = 1.
Apply Walsh-Hadamard to the result.

For constant f, the final output is |0) with probability 1.
For balanced f, the final output is non-zero with probability 1.

(Details on next slides.) Quirk Circuit

Requires only a single call to black box Ug, while classical algorithm requires at least 271 4+ 1 calls.


https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B%22H%22,%22H%22,%22H%22,%22H%22%5D,%5B%22%7Emjj8%22%5D,%5B1,1,1,1,%22Z%22%5D,%5B%22%7Emjj8%22%5D,%5B%22H%22,%22H%22,%22H%22,%22H%22%5D%5D,%22gates%22:%5B%7B%22id%22:%22%7E84cs%22,%22name%22:%22BAL%22,%22circuit%22:%7B%22cols%22:%5B%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B1,%22%E2%80%A2%22,1,1,%22X%22%5D,%5B1,1,%22%E2%80%A2%22,1,%22X%22%5D,%5B1,1,1,%22%E2%80%A2%22,%22X%22%5D%5D%7D%7D,%7B%22id%22:%22%7Emjj8%22,%22name%22:%22CONST%22,%22circuit%22:%7B%22cols%22:%5B%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D,%5B%22%E2%80%A2%22,1,1,1,%22X%22%5D%5D%7D%7D%5D%7D

First, prepare a complete superposition, and then apply the phase shift algorithm to negate
the terms corresponding to vectors |x) where f(x) = 1.

N—-1

1 N—-1 N—-1
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Jj=0
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because > .(—1)"7 = 0 for j # 0.



For balanced f,

o =5 (S 07 = S ) 1) where X = {al () = 0)

7 ieXo i¢ Xo

In this case, when 7 = 0, the amplitude is zero.
Therefore, measuring |¢) in the standard basis will return a non-zero j
with probability 1.



Links to Quirk Circuits

 Deutsch

e Selective Phase Change

 Deutsch-Josza



https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5B1,%22X%22%5D,%5B%22H%22,%22H%22%5D,%5B%22%7Eu252%22%5D,%5B%22H%22%5D%5D,%22gates%22:%5B%7B%22id%22:%22%7Eu252%22,%22name%22:%22NC%22,%22circuit%22:%7B%22cols%22:%5B%5B%22%E2%80%A2%22,%22X%22%5D%5D%7D%7D,%7B%22id%22:%22%7Eeuob%22,%22name%22:%22CONST%22,%22circuit%22:%7B%22cols%22:%5B%5B%22%E2%80%A2%22,%22X%22%5D,%5B%22%E2%97%A6%22,%22X%22%5D%5D%7D%7D%5D%7D
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Simon’s Algorithm

Problem: Given a 2-to-1 function f, such that f(x) = f(x®a), find the hidden string a.

Create superposition |x)|f (x))
Measure the right part, which projects the left state into \/% (|xg) + |xo D a)).

Apply Walsh-Hadamard. (Details next slide.)

Measurement yields a random y such that y - a = 0 (mod 2).
Computation is repeated until n independent equations - about 2n times.
Solve for a in 0(n?) steps.

Requires 0 (n) calls to U, followed by 0(n?) steps to solve for a.

Classical approach requires 0(2™/?) calls to f.
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Measurement yields random gy such that y - a = 0 mod 2, so the unknown bits of a; of a
must satisfy this equation:

Yo * Qo D---D Yn—1 - Up—1 = 0

Computation is repeated until n linearly independent equations have been found. Each
time, the resulting equation has at least a 50% probability of being linearly independent
of the previous equations. After repeating 2n times, there is a 50% chance that n linearly
independent equations have been found. These equations can be solved to find a in O(n?)
steps.



* Any efficient reversible classical circuit can be
efficiently implemented as a quantum circuit.
* Use inverse function to reduce space and unentangle temporary bits.

* For qguantum advantage, add some non-classical operations.
* E.g, phase change.

* Are these algorithms really useful?

* Perhaps not directly, but they illustrate ways in which quantum computing
may have an advantage over classical computing.
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