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Properties of Linear Algebra 
Applicable to Quantum Computing



OUTLINE:
Mathematics and Physics Concepts Required to 

Describe a Quantum Computing System 

• Introduce relevant mathematics applicable to quantum computing
• Introduce quantum mechanics axioms that describe observed physics 
• Combine relevant mathematics with the physics of quantum mechanics 

to allow one to formulate 
• Design programming primitives that can aggregate into quantum computing 

algorithms
• Program algorithms for implementation on quantum simulators and HW

platforms
• Configure and run these algorithms on quantum computing simulators and 

quantum computing hardware platforms
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Theory of Quantum Mechanics Describes 
Behavior Observed in a Non-classical World

• In order to properly design quantum computing algorithms programs and physical 
devices to performs calculations based on the observables axioms of 
quantum mechanics one must

• Understand the quantum mechanical properties and measured observables 
• Use appropriate mathematics to properly describes these properties and observables  

• Quantum theory is a mathematical model of the physical world at a scale where the 
size of the observation being made are of the same order of magnitude as the size of 
the object being observed

• Measuring the speed of a car moving on a road (classical)
• Measuring the bound state energy of an electron in a hydrogen atom (quantum mechanical)

• Many of the observed behaviors of the physical world at the quantum level have no 
analogs in people’s everyday (classical) experiences 
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Building a Rigorous Mathematical Foundation 
for Describing Quantum Computing 

-------
Utilize the Mathematics of Linear Algebra 

to Represent Quantum Computing Processes
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Mathematics Applicable to Quantum Computing

• The axioms of quantum mechanics are well described by the 
mathematics of linear algebra

• Linear algebra concepts for describing a quantum computing system 
• Any given system is identified with some finite- or infinite-dimensional Hilbert 

space 
• The system can be mathematically represented as states 
• Pure states correspond to vectors of norm 1
• This norm 1 set of all pure states can be graphically represented/visualized by a 

unit sphere in a Hilbert space 
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Review Basic Linear Algebra Concepts

• Vector Space:  A vector space is a collection vectors, which may 
be added together and multiplied by scalar quantities and still be a 
part of that same  collection of vectors

• The adjoint is the complex conjugate transpose of a column 
vector “a” and is sometimes called the Hermitian conjugate

• The space is complete as expressed by the norm 
||a|| = (<a|a>)1/2

𝒂𝒂†



Review Basic Linear Algebra Concepts

Linear Dependence and Linear Independence

• A set of vectors is said to be linearly dependent if one 
of the vectors in the set can be defined as a linear 
combination of the others

• A set of vectors is said to be linearly independent if no 
vector in the set can be written according to the 
previous statement
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Review Basic Linear Algebra Concepts

Basis Vectors 

A set of elements (vectors) in a vector space V is called 
a basis, or a set of basis vectors, if the vectors are 
• linearly independent
• every vector in the vector space is a linear combination 

of this set

A basis is a linearly independent spanning set
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Review Basic Linear Algebra Concepts
Properties and Definitions of a Vector Space

• Given a vector space V containing vectors A, B, C the  
following properties apply

• Commutativity [ A+B=B+A ]

• Associativity of vector addition [ (A+B)+C=A+(B+C)  ]

• Additive identity  [0+A=A+0=A ]  for all A 

• Existence of additive inverse: For any A, there exists a 
(-A) such that  A+(-A)=0
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Review Basic Linear Algebra Concepts
Properties and Definitions of a Vector Space

• Given a vector space V containing vectors A, B, C the  
following properties apply

• Scalar multiplication identity [ 1.A=A ]
• Given scalars r and s

• Associativity of scalar multiplication [ r(sA)=(rs)A ]
• Distributivity of scalar sums [ (r+s)A=rA+sA ]
• Distributivity of vector sums [ r(A+B)=rA+rB ]
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Hilbert Space
• Hilbert Space: A Hilbert space is a vector space G that has an inner product 

<u,v> such that a norm 
𝑢𝑢 = < 𝒖𝒖,𝒖𝒖 >

turns G into a complete metric space.  (A complete metric space is a metric space 
in which every Cauchy sequence is convergent)
• A Hilbert Space with vectors a and b may be defined over either the real or 

complex numbers with an inner product <b|a>
• A Hilbert Space maps an ordered pair of vectors to the complex numbers with the 

following properties
• Positivity <a|a> is greater than 0   for |a> greater than 0
• Linearity <c|(α|a> + β|b>) =  α<c|a> + β<c|b> where α and β are complex constants
• Skew symmetry <b|a> = (<a|b>)*

• An example of a finite-dimensional Hilbert space is an n-dimensional vector space of the 
complex numbers n with <u,v> as the vector dot product of u and v* (complex conjugate)

25-Aug 2020  27-Aug-2020 CSC591/592-FALL 2020  Patrick Dreher 11



Dirac “bra” and “ket” Notation

Dirac “ket” notation |a> represents a column vector

a Dirac “bra” notation <a|

The transpose aT of a column vector a is a row vector
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|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

𝒂𝒂

< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗



Examples of Normalized Vectors in Dirac Notation
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Mathematical Representation of 
Binary States and Superposition

• A binary state (classical bit) defines a state by 
• values of either “0” or “1” (“on” or “off”)
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Mathematical Representation of 
Bits, Qubits and Superposition

• A classical bit defines a state by values 
of either “0” or “1” (“on” or “off”)

• A quantum bit (qubit) can also have a state of
“0” or “1” but it can also have a possibility of 
being described by additional states
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Mathematical Representation of 
Bits, Qubits and Superposition

• A classical bit defines a state by values 
of either “0” or “1” (“on” or “off”)

• A quantum bit (qubit) can also have a state of
“0” or “1” and it can also have a possibility of 
being described by additional states

• Qubit can form a superposition state 
represented by a vector that is a superposition 
or linear combination of both a “0” or “1”
|a> = α|0> + β|1> 
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|α|2 + |β|2 = 1



A Qubit
• A qubit is a quantum system described by a two-dimensional Hilbert 

space, whose state can take any value of the form 
|a> = α|0> + β|1> 

• We can perform a measurement that projects the qubit onto the 
basis {|0>,|1>} which will measure an outcome of |0> with 
probability |α |2 and an outcome of |1> with probability |β|2

• Qubit can form a superposition state represented by a vector that is a 
superposition or linear combination of both a “0” or “1”

• The coefficients α and β also encode the relative phase that has 
physical significance
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|α|2 + |β|2 = 1



Basis Vectors for One Qubit
• In Dirac notation a qubit can be represented by  

a = α|0> + β|1>         |α|2 + |β|2 = 1 (modulus)
where α and β are complex coefficients

• α is the probability amplitude of measuring the |0> state and β is the 
probability amplitude of measuring the |1> state

• Common basis is                 and                
• Probability to measure the |0> state is |α|2

• Probability to measure the |1> state is |β|2 

• Calculate <0|0> and <1|1> (gives an answer of a single number)
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|𝟎𝟎 >= 𝟏𝟏
𝟎𝟎 |𝟏𝟏 >= 𝟎𝟎

𝟏𝟏



Constructing Matrices from Bras and Kets
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0 >< 0 = 1
0 1 0 = 1 0

0 0

0 >< 1 = 1
0 0 1 = 0 1

0 0

|1 >< 0| = 0
1 1 0 = 0 0

1 0

|1 >< 1| = 0
1 0 1 = 0 0

0 1
Outer products are a useful mechanism for writing matrices, especially unitaries because 
they capture state transformations

If the bra and ket are placed in the opposite order 



A Qubit

• Interpret a qubit from a geometric standpoint
• A |0> and |1> can represent opposite orientations of a vector in a 

three-dimensional space along a constructed set of axes in a 
coordinate system (example: z-axis with polar angle θ and azimuthal 
angle φ)

• A vector in this geometric construction can
be transformed by rotations that express
symmetries of the operations
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Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch_sphere

https://en.wikipedia.org/wiki/Bloch_sphere


Symmetries and Spatial Rotations 

• Consider the case of a three dimensional rotation
• Given a vector v one can perform an infinitesimal rotation of v by dΘ

about the axis specified by a unit vector                           
• Mathematically                                          where are the 

components of angular rotations
• Basic properties of rotations can be written as commutation relations  

[Ji, Jj]= Ji Jj - Jj Ji

where        is the totally antisymmetric tensor and repeated indices are 
summed
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)�𝑛𝑛 = (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3𝑅𝑅( �𝑛𝑛,𝑑𝑑𝑑𝑑) = 𝐼𝐼 − 𝑖𝑖𝑑𝑑𝑑𝑑 �𝑛𝑛 ⋅ 𝐽𝐽
𝐽𝐽

[ , ]i j ijk kJ J i Jε=
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
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Rotation Group
• Although the “defining” representation of the rotation group is three 

dimensional, the simplest nontrivial irreducible representation is two 
dimensional

• In this case there is a unique two-dimensional irreducible 
representation, up to a unitary change of basis.

• The generators of this rotation group are
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0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

=

=

=

𝜎𝜎𝑥𝑥

𝜎𝜎𝑦𝑦

𝜎𝜎𝑧𝑧
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Properties of These Rotation Matrices

• Matrices are mutually anticommuting
• They mathematically can be squared to the identity

• In spherical coordinates the pure density matrix can now be written
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𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖 + 𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖 = 2𝛿𝛿𝑖𝑖𝑖𝑖𝐼𝐼 �𝑛𝑛 ⋅ �⃗�𝜎 2 = 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝐼𝐼

�𝑈𝑈( �𝑛𝑛,𝑑𝑑) = exp(𝑖𝑖
𝑑𝑑
2
�𝑛𝑛 ⋅ �⃗�𝜎) = 𝐼𝐼cos(

𝑑𝑑
2

) − 𝑖𝑖 �𝑛𝑛 ⋅ �⃗�𝜎sin(
𝑑𝑑
2
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�𝜌𝜌( �𝑛𝑛) =
1
2

(𝐼𝐼 + �𝑛𝑛 ⋅ �⃗�𝜎



Rotation Operators
• Write the exponential in terms of a series expansion

• This gives rise to 3 useful classes of unitary matrices (rotation 
operators) when they are exponentiated
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𝑒𝑒−𝑖𝑖𝑖𝑖·𝑛𝑛θ2

∧

= cos
θ
2

− 𝑖𝑖sin(
θ
2

)𝜎𝜎 · 𝑛𝑛
∧

𝑒𝑒𝐴𝐴 = �

𝑖𝑖=0

∞
1
𝑘𝑘!
𝐴𝐴𝑖𝑖
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�𝑅𝑅
𝑛𝑛
∧(𝜃𝜃) ≡ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛·𝑖𝑖2

∧

= cos(
𝜃𝜃
2

)𝐼𝐼 − 𝑖𝑖sin(
𝜃𝜃
2

)(𝑛𝑛𝑥𝑥𝑋𝑋 + 𝑛𝑛𝑦𝑦𝑌𝑌 + 𝑛𝑛𝑧𝑧𝑍𝑍



Rotation Group
• The “defining” representation of the rotation group is three 

dimensional, but the simplest nontrivial irreducible representation is 
two dimensional

• In this case there is a unique two-dimensional irreducible 
representation, up to a unitary change of basis.

• The generators of this rotation group are
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Pauli X      X

Pauli Y      Y

Pauli Z       Z

0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

=

=

=

𝜎𝜎𝑥𝑥

𝜎𝜎𝑦𝑦

𝜎𝜎𝑧𝑧

Pauli Spin Matrices*
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* These Pauli Spin Matrices have a special relationship in physics to 
particles that carry a property known as “spin”



Mathematical Representation 
of Many Different Basis States

• Represent combination of “0”s and “1”s in a way that
many different values can be expressed 

• Define |0> = 1
0 and |1> = 0

1
• Can re-write |a> = α|0> + β|1> as

• This representation is visualized by states Bloch Sphere         
that lie of the surface of a Bloch sphere

• The Bloch sphere is a geometrical representation of the pure state space 
of a two-level quantum mechanical system
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Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch_sphere

|α|2 + |β|2 = 1

|𝑎𝑎 >= 𝑒𝑒𝑖𝑖𝑖𝑖(cos(𝑖𝑖
2

)|0 > +𝑒𝑒𝑖𝑖𝑖𝑖sin(𝑖𝑖
2

)|1 >)
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https://en.wikipedia.org/wiki/Bloch_sphere


Matrices as Rotations Acting on Qubits

• Matrices describe the rotations that takes a qubit from an initial 
state to a transformed state

• These rotations that operate on a qubit are labelled as “gates”

• Because qubit states can be represented as points on a sphere, 
reversible one-qubit gates can be thought of as rotations of the 
Bloch sphere.  (quantum gates are often called “rotations”)

• Reversible one qubit gates viewed as rotations in this three 
dimensional representation
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Construct Rotation Matrices From Bra and Ket Vectors
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 1
0 0 1 + 0

1 1 0 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1
0 1 0 + 0

1 0 1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑋𝑋𝑍𝑍 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of the expression    

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝒊𝒊

|𝒊𝒊𝒊𝒊𝒊𝒊𝒖𝒖𝒕𝒕𝒊𝒊 >< 𝒐𝒐𝒖𝒖𝒕𝒕𝒊𝒊𝒖𝒖𝒕𝒕𝒊𝒊|

Z = 0 >< 0 − 1 >< 1 = 1
0 1 0 − 0

1 0 1 = 1 0
0 −1
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Questions
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