Properties of Linear Algebra Applicable to Quantum Computing Part II

Patrick Dreher CSC591 / ECE592 – Fall 2020

OUTLINE:

Mathematics and Physics Concepts Required to Describe a Quantum Computing System

- Introduce relevant mathematics applicable to quantum computing
- Introduce quantum mechanics axioms that describe observed physics
- Combine relevant mathematics with the physics of quantum mechanics to allow one to formulate
 - Design programming primitives that can aggregate into quantum computing algorithms
 - Program algorithms for implementation on quantum simulators and HW platforms
 - Configure and run these algorithms on quantum computing simulators and quantum computing hardware platforms

Roadmap For Designing a Gate Based Quantum Computer

- Assemble the mathematical language to describe the quantum mechanical dynamics being harnessed in order to build a quantum computing hardware platform
- The underlying quantum mechanical dynamics of the physical system is initialized by defining qubits in some initial state based on the axioms of quantum mechanics
- These qubits evolve through a sequence of applied unitary operations and projective measurements (called gates) that manipulate the states of the qubits
- Sequences of gates are assembled into a circuit that represents a set of instructions that model the problem being implemented on a quantum computer
- Circuit instructions are compiled and delivered to the qubits in the quantum computer as a set of microwave control pulses
- These microwave pulses implement the desired unitary quantum mechanical statetransformations and/or measurements by steering or evolving these qubits from an initialized state through final measurement
- The final measurement extracts classical information in the form of bit strings, which encode the outcome of projective measurements of the qubits in a particular measurement basis according to the axioms of quantum mechanics and the mathematics of linear algebra

Properties of Linear Algebra Applicable to Quantum Computing Part II

Rotation Group

- Recall from the Part 1 lecture
- The "defining" representation of the rotation group is three dimensional, but the simplest nontrivial irreducible representation is two dimensional
- In this case there is a unique two-dimensional irreducible representation, up to a unitary change of basis
- The generators of this rotation group are

NC STATEUNIVERSITY (Y

Mathematical Representation of Many Different Basis States

 Represent combination of "0"s and "1"s in a way that many different values can be expressed

• Define
$$|0> = {1 \choose 0}$$
 and $|1> = {0 \choose 1}$

• Can re-write $|a\rangle = \alpha |0\rangle + \beta |1\rangle$ as $|\alpha|^2 + |\beta|^2 = 1$

$$|a\rangle = e^{i\gamma}(\cos(\frac{\theta}{2})|0\rangle + e^{i\phi}\sin(\frac{\theta}{2})|1\rangle)$$

• This representation is visualized by states that lie of the surface of a Bloch sphere

Bloch Sphere

Figure from Wikipedia Bloch Sphere https://en.wikipedia.org/wiki/Bloch sphere

• The Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system

Matrices as Rotations Acting on Qubits

- Matrices describe the rotations that takes a qubit from an initial state to a transformed state
- These rotations that operate on a qubit are labelled as "gates"
- Because qubit states can be represented as points on a sphere, reversible one-qubit gates can be thought of as rotations of the Bloch sphere. (quantum gates are often called "rotations")

NC STATEUNIVERSITY

Construct Rotation Matrices From Bra and Ket Vectors

• The matrix representation of the expression $\sum_{i} |input_i| > < output_i|$

$$I = |0> < 0| + |1> < 1| = {1 \choose 0}(1 \quad 0) + {0 \choose 1}(0 \quad 1) = {1 \choose 0} \frac{1}{1}$$

$$X = |0> < 1| + |1> < 0| = {1 \choose 0}(0 \quad 1) + {0 \choose 1}(1 \quad 0) = {0 \choose 1} \frac{1}{1}$$

$$Z = |0> < 0| - |1> < 1| = {1 \choose 0}(1 \quad 0) - {0 \choose 1}(0 \quad 1) = {1 \choose 0} \frac{1}{1} \frac{1}{1}$$

$$Y = iXZ = i {0 \choose 1} {1 \choose 0} {1 \choose 0} - 1 = i {0 \choose 1} {1 \choose 0} = {0 \choose i} \frac{-i}{0}$$

$$H = \frac{1}{\sqrt{2}} [(|0> + |1>) < 0| + (|0> - |1>) < 1|] = \frac{1}{\sqrt{2}} {1 \choose 1} \frac{1}{1}$$

Building Tensor Product from Matrices

Let A and B be represented by the following matrices

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

$$A \otimes B = \begin{bmatrix} a \begin{pmatrix} e & f \\ g & h \end{pmatrix} & b \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ c \begin{pmatrix} e & f \\ g & h \end{pmatrix} & d \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{bmatrix}$$

General Statement - Outer Products

 Any matrix can be written purely in terms of its outer products (example)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a|0><0| +b|0><1| +c|1><0| +d|1><1|$$

- This is a useful formulation to express linear transformations
- Select an original set of basis states (orthogonal) and express in this outer product representation
- · Can directly read the effect of the unitary on the basis stated

Properties of Outer Products

• Given vectors **U**, **V**, and **W** and a scalar c

$$(U \otimes V)^T = (V \otimes U)$$

 $(V+W) \otimes U = V \otimes U + W \otimes U$
 $U \otimes (V+W) = U \otimes V + U \otimes W$
 $C(V \otimes W) = (CV) \otimes W = V \otimes (CW)$

NOTE: The outer product of tensors also satisfies an additional associativity property

$$U \otimes (V \otimes W) = (U \otimes V) \otimes W$$

Properties of Complex Matrices

- <u>Hermitian Matrix</u> A matrix is defined to be a Hermitian matrix if it is a complex square matrix that is equal to its own conjugate transpose—(the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j)
- <u>Unitary matrix</u> a complex square matrix whose adjoint equals its inverse
 - > the product of U[†] and the matrix U is the identity matrix
 - ➤ Note: a complex square matrix U is unitary if its conjugate transpose is also its inverse U⁻¹)

$$U^{\dagger}U = U^{-1}U = I$$

States

- A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers
- Pure states are also known as state vectors or wave functions
- Mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces (re-visit density matrices when discussing noise in quantum computer systems)
- A mixed quantum state corresponds to a probabilistic mixture of pure states; however, different distributions of pure states can generate equivalent (i.e., physically indistinguishable) mixed states

State Transformations

- Outer products are a useful mechanism for writing matrices,
 especially unitaries because they capture state transformations
- Pick an orthogonal set of states (ex pair of $|0\rangle$ and $|1\rangle$) and define a set of states $\{|u_{00}\rangle, |u_{01}\rangle, |u_{10}\rangle, |u_{11}\}$ to which to which the unitary rotates the original set of orthogonal states

$$U = |u_{00}\rangle < 00| + |u_{01}\rangle < 01 + |u_{10}\rangle < 10| + |u_{11}\rangle < 11|$$

- This expression is not unique
- This is a general expression that can be constructed for every possible set of orthogonal input states

State Transformations and Concept of a Phase

 There will be at least one set of orthogonal input states that will take the form of eigenstates of the matrix

$$A = \sum_{j} \alpha_{j} |e_{j} > < e_{j}|$$

where $\alpha_j = \sum_{j} \exp(i e_j)$

- The unitary maps each state of the basis $|e_j\rangle \rightarrow \exp(i e_j)|e_j\rangle$
- The transformed state is also a valid basis
 - Implies that the exponential terms must be complex number of magnitude 1
 - The e_i are real numbers
- This formalism also introduces a relative phase when a superposition of these states are combined

Hermitian Matrices and Unitaries

- Hermitian matrices have well defined eigenvalues and eigenstates
- They can be written in the same form as the unitary matrix "A"

$$H = \sum_{j} h_j |h_j> < h_j|$$

- Hermitian matrices have the property that H=H [†]
- This requirement forces the eigenvalues and eigenvectors to have specific properties

Hermitian Matrices and Unitaries

• Using the property $|h_j>^\dagger=$ < $h_j|$ examine the inner product

$$(|h_j> < h_j|)^{\dagger} = (< h_j|^{\dagger})(|h_j>^{\dagger}) = |h_j> < h_j|$$

• For this to be true the eigenvalues h_j of a Hermitian matrix must be real

Relationship between Unitary and Hermitian

- A unitary matrix (U) has complex exponentials of real numbers for eigenvalues
- Hermitian matrix (H) must have real numbers for eigenvalues
- Based on above 2 statements it is possible to define a Hermitian matrix from every unitary
- The eigenvalues can be related through exponentiation using the definition for exponentiation of a matrix*

* An entire family of unitaries can be constructed for each Hermitian

Summary

- A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers
- Pure states are also known as state vectors or wave functions
- A mixed quantum state corresponds to a probabilistic mixture of pure states
- Different distributions of pure states can generate equivalent (i.e., physically indistinguishable) mixed states
- Mixed states are represented by density matrices (next tutorial)
- Density matrices are positive semidefinite operators that act on Hilbert spaces

NC STATEUNIVERSITY

Questions