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Properties of Linear Algebra 
Applicable to Quantum Computing

Part II



OUTLINE:
Mathematics and Physics Concepts Required to 

Describe a Quantum Computing System 

• Introduce relevant mathematics applicable to quantum computing
• Introduce quantum mechanics axioms that describe observed physics 
• Combine relevant mathematics with the physics of quantum mechanics 

to allow one to formulate 
• Design programming primitives that can aggregate into quantum computing 

algorithms
• Program algorithms for implementation on quantum simulators and HW

platforms
• Configure and run these algorithms on quantum computing simulators and 

quantum computing hardware platforms
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Roadmap For Designing a Gate Based Quantum Computer 
• Assemble the mathematical language to describe the quantum mechanical dynamics 

being harnessed in order to build a quantum computing hardware platform
• The underlying quantum mechanical dynamics of the physical system is initialized by 

defining qubits in some initial state based on the axioms of quantum mechanics
• These qubits evolve through a sequence of applied unitary operations and projective 

measurements (called gates) that manipulate the states of the qubits 
• Sequences of gates are assembled into a circuit that represents a set of instructions 

that model the problem being implemented on a quantum computer
• Circuit instructions are compiled and delivered to the qubits in the quantum 

computer as a set of microwave control pulses 
• These microwave pulses implement the desired unitary quantum mechanical state-

transformations and/or measurements by steering or evolving these qubits from an 
initialized state through final measurement

• The final measurement extracts classical information in the form of bit strings, which 
encode the outcome of projective measurements of the qubits in a particular 
measurement basis according to the axioms of quantum mechanics and the 
mathematics of linear algebra 
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Properties of Linear Algebra 
Applicable to Quantum Computing

Part II



Rotation Group
• Recall from the Part 1 lecture
• The “defining” representation of the rotation group is three dimensional, 

but the simplest nontrivial irreducible representation is two dimensional
• In this case there is a unique two-dimensional irreducible representation, 

up to a unitary change of basis
• The generators of this rotation group are
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* These Pauli Matrices have a special relationship in physics to particles 
that carry a property known as “spin”



Mathematical Representation 
of Many Different Basis States

• Represent combination of “0”s and “1”s in a way that
many different values can be expressed 

• Define |0> = 1
0 and |1> = 0

1
• Can re-write |a> = α|0> + β|1> as

• This representation is visualized by states Bloch Sphere         
that lie of the surface of a Bloch sphere

• The Bloch sphere is a geometrical representation of the pure state space 
of a two-level quantum mechanical system
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Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch_sphere

|α|2 + |β|2 = 1
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2

)|1 >)
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https://en.wikipedia.org/wiki/Bloch_sphere


Matrices as Rotations Acting on Qubits

• Matrices describe the rotations that takes a qubit from an initial 
state to a transformed state

• These rotations that operate on a qubit are labelled as “gates”

• Because qubit states can be represented as points on a sphere, 
reversible one-qubit gates can be thought of as rotations of the 
Bloch sphere.  (quantum gates are often called “rotations”)
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Construct Rotation Matrices From Bra and Ket Vectors
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 1
0 0 1 + 0

1 1 0 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1
0 1 0 + 0

1 0 1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of the expression    

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝒊𝒊

|𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊 >< 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊|

Z = 0 >< 0 − 1 >< 1 = 1
0 1 0 − 0

1 0 1 = 1 0
0 −1
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Building Tensor Product from Matrices 
• Let A and B be represented by the following matrices

A=                            B=

a b

A     B = 
c d
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General Statement - Outer Products

• Any matrix can be written purely in terms of its outer products 
(example)

a b
c d = a|0><0| +b|0><1| + c|1><0| +d|1><1|

• This is a useful formulation to express linear transformations 
• Select an original set of basis states (orthogonal) and express in this 

outer product representation
• Can directly read the effect of the unitary on the basis stated
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Properties of Outer Products

• Given vectors U, V, and W and a scalar c

(U      V) T =  (V      U)
(V+W)      U = V      U + W     U
U     (V + W) = U     V + U      W
c (V     W) = (c V)  W = V      (c W)
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⊗ ⊗
⊗ ⊗ ⊗

⊗ ⊗ ⊗
⊗ ⊗ ⊗

NOTE:  The outer product of tensors also satisfies an additional associativity property 
U     (V W) = (U     V )    W⊗⊗ ⊗ ⊗



Properties of Complex Matrices

• Hermitian Matrix – A matrix is defined to be a Hermitian matrix 
if it is a complex square matrix that is equal to its own conjugate 
transpose—(the element in the i-th row and j-th column is equal 
to the complex conjugate of the element in the j-th row and i-th
column, for all indices i and j)

• Unitary matrix - a complex square matrix whose adjoint equals 
its inverse
the product of U† and the matrix U is the identity matrix
Note: a complex square matrix U is unitary if its conjugate transpose is 

also its inverse U-1)
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𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



States

• A pure quantum state can be represented by a ray in a Hilbert 
space over the complex numbers

• Pure states are also known as state vectors or wave functions
• Mixed states are represented by density matrices, which are positive 

semidefinite operators that act on Hilbert spaces (re-visit density 
matrices when discussing noise in quantum computer systems)

• A mixed quantum state corresponds to a probabilistic mixture of 
pure states; however, different distributions of pure states can 
generate equivalent (i.e., physically indistinguishable) mixed states
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State Transformations

• Outer products are a useful mechanism for writing matrices, 
especially unitaries because they capture state transformations

• Pick an orthogonal set of states (ex pair of |0> and |1>) and define a 
set of states {|u00>,|u01> ,|u10>,|u11 }  to which to which the unitary 
rotates the original set of orthogonal states 

U=|u00><00|+|u01><01 +|u10><10| + |u11 ><11|
• This expression is not unique
• This is a general expression that can be constructed for every 

possible set of orthogonal input states
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State Transformations and Concept of a Phase
• There will be at least one set of orthogonal input states that will take 

the form of eigenstates of the matrix

where  𝛼𝛼𝑗𝑗 = ∑𝑗𝑗.exp(i 𝑒𝑒𝑗𝑗)

• The unitary maps each state of the basis |ej>  exp(i 𝑒𝑒𝑗𝑗)|𝑒𝑒𝑗𝑗 >
• The transformed state is also a valid basis 

• Implies that the exponential terms must be complex number of magnitude 1
• The 𝑒𝑒𝑗𝑗 are real numbers

• This formalism also introduces a relative phase when a superposition 
of these states are combined
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A = �
𝑗𝑗

𝛼𝛼𝑗𝑗 |𝑒𝑒𝑗𝑗 >< 𝑒𝑒𝑗𝑗|



Hermitian Matrices and Unitaries

• Hermitian matrices have well defined eigenvalues and eigenstates
• They can be written in the same form as the unitary matrix “A”

• Hermitian matrices have the property that  H=H †

• This requirement forces the eigenvalues and eigenvectors to have 
specific properties
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H = �
𝑗𝑗

ℎ𝑗𝑗 |ℎ𝑗𝑗 >< ℎ𝑗𝑗|



Hermitian Matrices and Unitaries

• Using the property |ℎ𝑗𝑗 >†= < ℎ𝑗𝑗| examine the inner product

(|ℎ𝑗𝑗 >< ℎ𝑗𝑗|) †=(< ℎ𝑗𝑗| †)( |ℎ𝑗𝑗 >†)=|ℎ𝑗𝑗 >< ℎ𝑗𝑗|

• For this to be true the eigenvalues hj of a Hermitian matrix must be 
real
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Relationship between Unitary and Hermitian 

• A unitary matrix (U) has complex exponentials of real numbers for 
eigenvalues

• Hermitian matrix (H) must have real numbers for eigenvalues
• Based on above 2 statements it is possible to define a Hermitian matrix 

from every unitary
• The eigenvalues can be related through exponentiation using the definition 

for exponentiation of a matrix*
U=exp(iH)
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* An entire family of unitaries can be constructed for each Hermitian



Summary
• A pure quantum state can be represented by a ray in a Hilbert space over 

the complex numbers
• Pure states are also known as state vectors or wave functions
• A mixed quantum state corresponds to a probabilistic mixture of pure 

states
• Different distributions of pure states can generate equivalent (i.e., 

physically indistinguishable) mixed states
• Mixed states are represented by density matrices (next tutorial)
• Density matrices are positive semidefinite operators that act on Hilbert 

spaces
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Questions
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