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OUTLINE:

Mathematics and Physics Concepts Required to
Describe a Quantum Computing System

* Introduce relevant mathematics applicable to quantum computing
* Introduce quantum mechanics axioms that describe observed physics

 Combine relevant mathematics with the physics of quantum mechanics
to allow one to formulate

* Design programming primitives that can aggregate into quantum computing
algorithms

* Program algorithms for implementation on quantum simulators and HW
platforms

e Configure and run these algorithms on quantum computing simulators and
guantum computing hardware platforms



Roadmap For Designing a Gate Based Quantum Computer

* Assemble the mathematical language to describe the qguantum mechanical dynamics
being harnessed in order to build a quantum computing hardware platform

* The underlying guantum mechanical dynamics of the physical system is initialized by
defining qubits in some initial state based on the axioms of quantum mechanics

* These qubits evolve through a sequence of applied unitary operations and projective
measurements (called gates) that manipulate the states of the qubits

* Sequences of gates are assembled into a circuit that represents a set of instructions
that model the problem being implemented on a quantum computer

* Circuit instructions are compiled and delivered to the qubits in the quantum
computer as a set of microwave control pulses

* These microwave pulses implement the desired unitary quantum mechanical state-
transformations and/or measurements by steering or evolving these qubits from an
initialized state through final measurement

* The final measurement extracts classical information in the form of bit strings, which
encode the outcome of projective measurements of the qubits in a particular
measurement basis according to the axioms of quantum mechanics and the
mathematics of linear algebra
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Rotation Group
e Recall from the Part 1 lecture

* The “defining” representation of the rotation group is three dimensional,
but the simplest nontrivial irreducible representation is two dimensional

* In this case there is a unigue two-dimensional irreducible representation,
up to a unitary change of basis

e The generators of this rotation group are

_

0 1)
. 1 L - O'
Pauli X — X (1 0 x
0 —i\ . . .
PauliY— Y — (i 0 ) = Oy — Pauli Matrices
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Mathematical Representation

of Many Different Basis States 2= 10

—
* Represent combination of “0”s and “1”s in a way that/ N

many different values can be expressed [ - a_ ‘~~=__H1,ﬁ
* Define |0> = ((1)) and |1>= ((1)) E - -ﬁ}
* Can re-write |a>=a|0>+B|1> as |a|?+|B[*=1 ”"< /f
la >= eiy(cos(§)|0 > +ei‘/’sin(§)|1 >) ——
* This representation is visualized by states Bloch Sphere
that lie of the surface of a Bloch sphere o B T here

* The Bloch sphere is a geometrical representation of the pure state space
of a two-level guantum mechanical system


https://en.wikipedia.org/wiki/Bloch_sphere

Matrices as Rotations Acting on Qubits

* Matrices describe the rotations that takes a qubit from an initial
state to a transformed state

* These rotations that operate on a qubit are labelled as “gates”
* Because qubit states can be represented as points on a sphere,

reversible one-qubit gates can be thought of as rotations of the
Bloch sphere. (quantum gates are often called “rotations”)



Construct Rotation Matrices From Bra and Ket Vectors

* The matrix representation of the expression ) linput; >< output

0 1
X=|O><1|+|1><O|=((1))(O 1)+(2)(1 0)=((1) é)
z=|0><0|—|1><1|=((1))(1 0)—(2)(0 1)=(é _01)

r=ixz=i(> D 2)=iC H=C )

. 11 1
H = =100 > +]1>) < 0|+ (|0 > ~[1 > <1l=5( )
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Building Tensor Product from Matrices

* Let A and B be represented by the following matrices
b e f
A= (ccl d) = (g h)

a(g ) oG &)
A®B-=
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General Statement - Outer Products

* Any matrix can be written purely in terms of its outer products
(example)

(i 3)=a|0><0| +b|0><1| +c|1><0]| +d|1><1]|

* This is a useful formulation to express linear transformations

 Select an original set of basis states (orthogonal) and express in this
outer product representation

e Can directly read the effect of the unitary on the basis stated



Properties of Outer Products

e Given vectors U, V, and W and a scalar c

(U V)T= (V QU)

(VIW)® U=V U+WQR U
URQ(V+W)=URV+U® W
c(VO® W) =(cV)Q W=V® (cW)

NOTE: The outer product of tensors also satisfies an additional associativity property

URK(VRW)= (UK V )QW



Properties of Complex Matrices

* Hermitian Matrix — A matrix is defined to be a Hermitian matrix
if it is a complex square matrix that is equal to its own conjugate
transpose—(the element in the i-th row and j-th column is equal
to the complex conjugate of the element in the j-th row and i-th

column, for all indices i and j)
* Unitary matrix - a complex square matrix whose adjoint equals

Its inverse
»the product of U"and the matrix U is the identity matrix

»Note: a complex square matrix U is unitary if its conjugate transpose is
also its inverse U1)

UTU =U"1U =1



States

* A pure guantum state can be represented by a ray in a Hilbert
space over the complex numbers

* Pure states are also known as state vectors or wave functions

* Mixed states are represented by density matrices, which are positive
semidefinite operators that act on Hilbert spaces (re-visit density
matrices when discussing noise in quantum computer systems)

* A mixed quantum state corresponds to a probabilistic mixture of
pure states; however, different distributions of pure states can
generate equivalent (i.e., physically indistinguishable) mixed states
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State Transformations

e Quter products are a useful mechanism for writing matrices,
especially unitaries because they capture state transformations

 Pick an orthogonal set of states (ex pair of |0> and |1>) and define a
set of states {|ugy>,|Ug;>, | U™, |Uy; } to which to which the unitary
rotates the original set of orthogonal states

U=|ug><00|+|uy;><01 +|u;><10]| + |uyy ><11]|
* This expression is not unique

* This is a general expression that can be constructed for every
possible set of orthogonal input states



State Transformations and Concept of a Phase

* There will be at least one set of orthogonal input states that will take
the form of eigenstates of the matrix

A= Zaj |€] >< e]|
J
where a; = 3;.expli¢;)
* The unitary maps each state of the basis |e;> = exp(i ¢;)|e; >

 The transformed state is also a valid basis

* Implies that the exponential terms must be complex number of magnitude 1
* The e; are real numbers

* This formalism also introduces a relative phase when a superposition
of these states are combined



NC STATEUNIVERSITYTY

Hermitian Matrices and Unitaries

* Hermitian matrices have well defined eigenvalues and eigenstates

* They can be written in the same form as the unitary matrix “A”
H= ) hlh ><
J

* Hermitian matrices have the property that H=H f

* This requirement forces the eigenvalues and eigenvectors to have
specific properties
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Hermitian Matrices and Unitaries

* Using the property |h; >T= < h;| examine the inner product

(Jh; >< k) '=(< bj] T)( 1B >")=|h; >< )]

* For this to be true the eigenvalues h; of a Hermitian matrix must be
real
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Relationship between Unitary and Hermitian

* A unitary matrix (U) has complex exponentials of real numbers for
eigenvalues

* Hermitian matrix (H) must have real numbers for eigenvalues

* Based on above 2 statements it is possible to define a Hermitian matrix
from every unitary

* The eigenvalues can be related through exponentiation using the definition
for exponentiation of a matrix*

U=exp(iH)

* An entire family of unitaries can be constructed for each Hermitian




Summary

* A pure guantum state can be represented by a ray in a Hilbert space over
the complex numbers

* Pure states are also known as state vectors or wave functions

* A mixed quantum state corresponds to a probabilistic mixture of pure
states

* Different distributions of pure states can generate equivalent (i.e.,
physically indistinguishable) mixed states

* Mixed states are represented by density matrices (next tutorial)

* Density matrices are positive semidefinite operators that act on Hilbert
spaces
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